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Abstract 

This paper discusses an early-warning system for flutter detection during wind tunnel testing of scaled 
models. In this type of testing, it is desired to carefully verify and track the vibration behavior, since 
during flutter appearance, model destruction may occur. To this aim, sensors are mounted on the 
model and the dynamic response is measured. From the analysis of the data, an assessment of flutter 
safety can be made. In this paper, wind tunnel data at various flow conditions are used to validate the 
speed and reliability of an Operational Modal Analysis approach for tracking the evolution of the 
eigenfrequencies, damping ratios and mode shapes of the tested component. Operational Modal 
Analysis allows extracting these parameters from the structural response to natural turbulence 
excitation without the need for special artificial excitation. Both strain gauge and acceleration data are 
used. 

1. Introduction 

The development cycle of a new aircraft consists of several modelling and testing stages: structural finite element 
(FE) modelling, ground vibration testing (GVT), computational fluid dynamics (CFD) modelling, wind tunnel 
testing, and in-flight tests (Figure 1). These flight (vibration) tests allow the validation of the analytical models under 
various real flight conditions and, more important, allow to assess the aero-elastic interaction, as a function of 
airspeed and altitude, between the structure and the aerodynamic forces as they may lead to a sudden unstable 
behaviour known as flutter. Flutter shows up in the vibration signals as apparent negative damping and 
corresponding sudden increase of the vibration amplitudes. For economic and safety reasons (i.e. to avoid a loss of 
the aircraft), it is evidently avoided that an aircraft goes into flutter during an in-flight test, but it has to be certified 
that it has sufficient flutter margin when flying at the different points of the flight envelope where it is designed for. 
To determine this margin, typically, the trends of eigenfrequencies and damping ratios of the critical modes as a 
function of airspeed are carefully studied. This explains the need to perform a modal analysis during the flight. More 
background information on flight flutter testing can be found in [1][2]. An overview and discussion of some 
interesting data-based and model-based approaches to predict the onset of flutter during flight testing can be found in 
[3][4][5]. 
 
When exciting the aircraft artificially during the flight, a reference signal representative for the force input is 
typically recorded, Frequency Response Functions (FRFs) can be estimated and classical modal analysis can be 
applied. Exciting the aircraft during flight is possible in modern fly-by-wire aircraft by adding a sine sweep or pulse 
signal to the command signal sent to the primary control surfaces. However, during the actual flight, other excitation 
sources such as turbulence are present. Moreover, sticks inputs and minimum control laws are still active during the 
excitation and can also generate not controlled excitation. Sometimes, this results in rather noisy FRFs. For example, 
an aircraft tail response sensor receives a rather limited contribution from the wing excitation. Therefore the idea 
arose to neglect the excitation signal and apply Operational Modal Analysis to the aircraft acceleration signal. A 
similar reasoning applies to wind tunnel testing of scale models. The observation that the generated wind is exciting 
the model well above the noise floor of modern instrumentation and the practical challenges in providing measurable 
artificial excitation during wind tunnel testing lead to an interest in the use of Operational Modal Analysis. 
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The paper is organized as follows. In Section 2, the LMS PolyMAX method for Operational Modal Analysis (OMA) 
is reviewed. In Section 3, two case studies are discussed: one case combining 4 acceleration and 4 strain sensors 
mounted on an aircraft component and the second case involving 16 accelerometers mounted on an entire aircraft 
model. The 1st case study allows assessing the possibility to include strain measurements in the identification process 
and the 2nd case allows assessing the quality of the identified mode shapes. In both cases the performance and 
efficiency of automated tracking of the modal parameters during wind tunnel testing will be investigated. 

FE Model Test Model (GVT) Aerodyn. Panel Model Physical prototype

 
Figure 1: Aeroelasticity-related modelling and testing. 

2. PolyMAX for Operational Modal Analysis 

The estimation of eigenfrequencies, damping ratios and mode shapes from output-only vibration measurements is 
referred to as “Operational Modal Analysis” (OMA). Typical for the output-only case is that the lack of knowledge 
of the input is justified by the assumption that the input does not contain any information; or in other words, the input 
is white noise. The theoretical assumption of white noise turns out to be not too strict in practical applications. As 
long as the (unknown) input spectrum is quite flat, OMA methods will work fine. An overview and comparison of 
operational modal parameter estimation methods can be found in [6]. In this section, it will be discussed how the 
PolyMAX method, a particular algorithm which is very successful in classical modal analysis [7], can be used as 
well for Operational Modal Analysis. 

2.1 Output-only frequency-domain model 

Frequency-domain Operational Modal Analysis methods, such as PolyMAX, require output spectra as primary data. 
In this subsection, it will be shown that, under the assumption of white noise input, output spectra can be modelled in 
a very similar way as Frequency Response Functions (FRFs). It is well known that the modal decomposition of an 
FRF matrix [ ] mlH ×∈ω)(  is [8][9]: 
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where l  is the number of outputs; m  is the number of inputs; n  is the number of complex conjugated mode pairs; 
*•  is the complex conjugate of a matrix; H•  is the complex conjugate transpose (Hermitian) of a matrix; { } l

iv ∈  
are the mode shapes; mT

il >∈<  are the modal participation factors and iλ  are the poles, which are related to the 
eigenfrequencies iω  and damping ratios iξ  as follows: 

 iiiiii j ωξ−±ωξ−=λλ 2* 1,  (2) 
The input spectra [ ] mm

uuS ×∈  and output spectra [ ] ll
yyS ×∈ω)(  of a system represented by the FRF matrix [ ])(ωH  

are related as: 
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In case of operational data the output spectra are the only available information. The deterministic knowledge of the 
input is replaced by the assumption that the input is white noise. A property of white noise is that it has a constant 
power spectrum. Hence [ ]uuS  in (3) is independent of the frequency ω . The modal decomposition of the output 
spectrum matrix is obtained by inserting (1) into (3) and converting to the partial fraction form [10][11]: 
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where l
ig >∈<  are the so-called operational reference factors, which replace the modal participation factors in 

case of output-only data. Their physical interpretation is less obvious as they are a function of all modal parameters 
of the system and the constant input spectrum matrix. Note that the order of the power spectrum model is twice the 
order of the FRF model. The goal of OMA is to identify the right hand side terms of (4) based on measured output 
data pre-processed into output spectra (Section 0). 
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2.2 Pre-processing operational data 

Power spectra are defined as the Fourier transform of the correlation sequences. The most popular non-parametric 
spectrum estimate is the so-called weighted averaged periodogram (also known as modified Welch’s periodogram). 
Weighting means that the signal is weighted by one of the classical windows (Hanning, Hamming, …) to reduce 
leakage. Welch’s method starts with computing the discrete Fourier transform (DFT) lY ∈ω)(  of the weighted 
outputs: 
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where l
ky ∈  is the sampled output vector (the measurements); kw  denotes the time window; k  is the time 

instant; N  the number of time samples and t∆  the sampling time. An unbiased estimate of the spectrum is the 
weighted periodogram: 
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The variance of the estimate is reduced by splitting the signal in possibly overlapping blocks, computing the 
weighted periodogram of all blocks and taking the average: 
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where P  is the number of blocks and superindex b  denotes the block index. 
 
Another non-parametric spectrum estimate is the so-called weighted correlogram. It will be shown that this estimate 
has some specific advantages in a modal analysis context. First the correlation sequence has to be estimated ( i  being 
the time lag): 
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High-speed (FFT-based) implementations exist to compute the correlations as in (8); see for instance [12]. The 
weighted correlogram is the DFT of the weighted estimated correlation sequence: 
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where L  is the maximum number of time lags at which the correlations are estimated. This number is typically much 
smaller than the number of data samples to avoid the greater statistical variance associated with the higher lags of the 
correlation estimates. In a modal analysis context, the weighted correlogram has the following advantages: 
 
It is sufficient to compute the so-called half spectra which are obtained by using only the correlations having a 
positive time lag in (9): 
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The relation between the half spectra (10) and the full spectra (9) is the following: 

 ( )Hyyyyyy SSS )()()( ω+ω=ω ++  (11) 
It can be shown (see for instance [10]) that the modal decomposition of these half spectra only consists of the first 
two terms in (4): 
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The advantage in modal analysis is that models of lower order can be fitted without affecting the quality. 
 
Under the white noise input assumption, the output correlations are equivalent to impulse response. So, just like in 
impact testing, it seems logical to apply an exponential window kw  to the correlations before computing the DFT 
(10). The exponential window reduces the effect of leakage and the influence of the higher time lags, which have a 
larger variance. Moreover, the application of an exponential window to impulse responses or correlations is 
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compatible with the modal model and the pole estimates can be corrected. This is not the case when a Hanning 
window is used: such a window always leads to biased damping estimates. 

2.3 PolyMAX modal parameter estimation 

After having pre-processed output data into output spectra (Section 0), it is now the task to identify a modal model 
(Section 0). By comparing (12) with (1), it is clear that FRFs and half spectra can be parameterised in exactly the 
same way. By consequence, the same modal parameter estimation methods can be used in both cases. The PolyMAX 
frequency-domain system identification method considered in this paper identifies in a first step following so-called 
right matrix-fraction model: 
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where mlH ×∈ω)(  is the Frequency Response Function (FRF) matrix that is estimated in a non-parametric way 
from the measured vibration data; for output-only data the FRF is substituted by the half-spectrum matrix (12); 
[ ] ml

r
×∈β  are the numerator matrix polynomial coefficients; [ ] mm

r
×∈α  are the denominator matrix polynomial 

coefficients; l  is the number of outputs; m  is the number of inputs; p  is the model order. Note that a so-called z -
domain model (i.e. a frequency-domain model that is derived from a discrete-time model) is used in (13), with 

)exp( tjz ∆ω=  and t∆  being the sampling time. In modal analysis applications, the right matrix fraction model (13) 
is, after identification, analytically converted to a modal model: (1) or (12). 
 
Different procedures exist to identify a right matrix fraction model from measured FRFs. Equation (13) can be 
written down for all values ω  of the frequency axis of the FRFs. Basically, the unknown model coefficients 
[ ] [ ]rr βα ,  can be found as the Least-Squares (LS) solution of these equations after linearization. The PolyMAX 
algorithm is such a LS implementation which has been memory and time optimized and uses a particular parameter 
constraint. More details about the PolyMAX method can be found in [7][13]. Mainly due its user-friendliness (the 
method yields extremely clear stabilization diagrams), PolyMAX is considered as an important breakthrough in 
modal parameter estimation. The method is both implemented as part of the standard LMS Test.Lab software suite 
[14] as the dedicated Flutter Analysis package [15]. 

3. Case studies 

3.1 Wind tunnel test combining strain and acceleration data 

In a first case study, 4 accelerometers and 4 strain gauges were mounted on a wind tunnel test model. These data 
allow verifying the possibility to use both quantities in a flutter detection scheme. Figure 2 gives an overview of the 
entire test. It shows the Mach number and segments of strain measurements at constant Mach numbers. 
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Figure 2: Mach number and segments of strain measurements at constant Mach numbers. 

Figure 3 (Left) shows the power spectra of the acceleration and strain signals at a constant Mach number. Based on 
the inspection of these power spectra, the 3rd acceleration signal (Blue) and the 4th strain gauge signal (Dark Blue) 
were selected as references. Both signals have large amplitudes and seem to contain most of the dynamics (i.e. many 
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peaks present). Reference sensors play an important role in OMA since the cross spectra computations (12) are 
typically restricted to a rectangular matrix that contain the cross spectra between all sensors and a limited set of 
references. It is therefore important that good-quality signals are selected. Figure 3 (Right) shows stabilization 
diagrams obtained when applying PolyMAX to acceleration and strain signals respectively. It is clear that to a large 
amount the same modes are extracted in both cases. The identified eigenfrequencies and damping ratios are listed in 
Table 1. Also from these numbers, the good match of identification results is obvious. Figure 4 compares measured 
spectra with spectra synthesized from the identified modal parameters; i.e. right hand side of (12). 
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Figure 3: (Left) Power spectra of signals at constant Mach number; (Right) PolyMAX stabilization diagrams; (Top) 

using only acceleration signals; (Bottom) using only strain signals. 
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Figure 4: Comparison between measured (Red) spectra and synthesized spectra (Green). (Left) acceleration data; 

(Right) strain data. 
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Table 1: Identified eigenfrequencies and damping ratios from different measurement quantities: using only 
acceleration signals, using only strain signals, and using both types of signals. 

Acceleration data Strain data Combined data 
Mode )(i  

if  [Hz] iξ  [%] if  [Hz] iξ  [%] if  [Hz] iξ  [%] 
1 20.13 11 19.75 11 19.76 9.4 
2 47.69 4.3 47.76 4.3 47.96 4.1 
3 106.7 2.9 106.7 3.4 107.5 2.1 
4 150.5 2.2 150.4 2.3 150.6 2.2 
5 215.7 1.7 216.2 1.7 215.8 1.6 

 
As discussed earlier in this paper, the main advantage of PolyMAX is that it yields extremely clear stabilisation 
diagrams. This makes an automation of the parameter identification process rather straightforward and enables a 
continuous monitoring of the dynamic properties of a structure. An overview and discussion on automatic modal 
analysis techniques can be found in [16]. Automated modal analysis is still an active field of research. For instance, 
in [17], an interesting new approach is presented that is based on clustering techniques that does not require any user-
specified parameter or threshold value. 
 
Unlike above, no attempts were made to isolate certain data segments at constant Mach number, but the data were 
simply continuously analysed using a sliding window approach. Independent, automated modal analyses were 
applied to these highly-overlapping windows. Figure 5 shows the automatic PolyMAX results. The diagram is very 
clean and 6 modes can be easily tracked. For some of the modes there is a clear dependency of the eigenfrequencies 
on the data block number and thus measurement instant and thus Mach number. Some investigations were performed 
related to the minimal length of the time window in the continuous tracking. This minimal length is expected to be 
related to the frequency of the lowest mode of interest: to have a good identification of a mode, a sufficient number 
of cycles should be present in the data. It was observed that data segments of 4 seconds still yielded good results. 
Combining this segment length with an overlap factor of 75% would represent a one second-update of the modal 
parameters, making use of the data of the last 4 seconds. Figure 6 shows the tracking of 2 modes based on Figure 5. 
The mode around 20 Hz increases in frequency and after an initial increase of damping, shows a decrease with 
increasing Mach number. The mode around 150 Hz shows a decrease in frequency and an increase in damping. 
Finally, Figure 7 shows the tracking of the 3 lowest modes at 7 discrete points with constant Mach number. These 7 
points correspond to the 7 longest segments indicated in Figure 7. The lowest mode in this figure (blue line) was also 
represented in the continuous tracking (Figure 6) where it showed a similar trend. 

 
Figure 5: Automatic modal analysis results: the y-axis represents the index to the sliding window time segment that 

was used in the analysis; the x-axis is the frequency axis with an indication of identified poles. Each data segments is 
about 16 s long and overlaps 75% with the previous. 
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Figure 6: Continuous tracking results of eigenfrequencies (Top) and damping ratios (Bottom) of Mode around 20 Hz 

(Left) and Mode around 150 Hz (Right). 

 
Figure 7: Discrete tracking of modes using data segments at constant Mach number. (Left) eigenfrequeencies; 

(Right) damping ratios of the 3 lowest modes. 

3.2 Wind tunnel test with relatively large number of accelerometers 

Interesting about this case is that 16 accelerometers were mounted on an aircraft scale model, allowing the 
visualization of the measured mode shapes. During the test that had a duration of about 500 s, the wind speed was 
gradually increased. During 4 stages, the wind speed was kept constant (scaled wind speed of 0.70, 0.78, 0.88, 1.00) 
and an additional impact excitation was applied (See Figure 8: high amplitude spike accelerations during constant 
wind speeds). 
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Figure 8: Wind speed (scaled) and typical acceleration signal. 
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Just like in the previous case study (Section 0), the reference sensors were selected by comparing the power spectra 
of all signals (Figure 9 – Left). To capture both vertical and horizontal modes, at least one reference sensor was 
selected in both directions. In addition, the wing tip sensors appeared to be good candidates ((Figure 9 – Right). 
Figure 10 shows the evolution of some of the power spectra with increasing wind speeds at the 4 constant wind speed 
segments. It is clear that the amplitudes increase with increasing wind speed, but the change in location of the 
resonance peaks is less apparent. These changes can be highlighted by applying OMA to the data. Figure 11 shows 
the eigenfrequencies and damping ratios of 9 modes identified with PolyMAX as a function of wind speed. Figure 12 
shows some typical bending and torsion mode shapes. 
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Figure 9: (Left) Power spectra at constant wind speed data segment. The left cursor indicates vertical mode and the 

right cursor a horizontal one; (Right) sensor locations and indication of reference sensors. 
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Figure 10: Evolution of power spectra at increasing wind speeds (red – green – blue – pink). (Left) vertical wing tip 

sensors; (Right) horizontal wing tip sensor. 

     
Figure 11: Discrete tracking of modes using data segments at constant wind speed. (Left) eigenfrequeencies; (Right) 

damping ratios. 
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Figure 12: Mode shapes identified with OMA-PolyMAX using wind tunnel data. 

Finally, also an automated modal analysis was applied to highly-overlapping windows selected from the entire data 
set (Figure 13). Quite some modes can be tracked. Interesting to note is that when the additional impact excitation is 
applied (areas of constant wind velocity and high spectral amplitudes in Figure 13), an additional mode is found 
around 4.3 Hz. It was observed that data segments of 30 s still yielded good results. Combining this segment length 
with an overlap factor of 95% would represent an update of the modal parameters at 1.5 s, making use of the data of 
the last 30 s. The need for 30 s of data to make reliable estimates may seem long, but considering the fact that the 
lowest mode is around 3 Hz, the time segment only contains 100 periods of the lowest mode. 

 
Figure 13: Automatic modal analysis results: the y-axis represents the index to the sliding window time segment that 
was used in the analysis; the x-axis is the frequency axis with an indication of identified poles. Each data segments is 
about 60 s long and overlaps 95% with the previous. The curves on the Left represent the wind speed at the different 

estimations. 
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4. Conclusions 

This paper discussed the application of (automated) Operational Modal Analysis for in-line flutter assessment during 
wind tunnel testing of scaled models. Two case studies were considered: one case combining 4 acceleration and 4 
strain sensors mounted on an aircraft component and the second case involving 16 accelerometers mounted on an 
entire aircraft model. It was found that the PolyMAX method for OMA could successfully identify the modes from 
the output-only data. The excitation forces could not be measured as they originated from the wind itself. In the 2nd 
case study it was observed that applying an additional impact excitation did not improve dramatically the 
identification of most of the modes, although it was found that 1 additional mode appeared in the data. Other 
observations are that also strains can be successfully used to estimate the eigenfrequencies and damping ratios and if 
a sufficient number of accelerometers are available, high-quality mode shapes can also be estimated. Finally, the 
performance and efficiency of continuous tracking were investigated. It was found that it is possible to obtain each 
second an update of the estimates. This update rate depends on the overlapping factor and is limited by the 
calculation time needed in the PolyMAX algorithm. Evidently, these updates can only be obtained by analysing a 
sufficient amount of “historical” data. The needed time window depends on the lowest mode and as a rule of thumb, 
it seems that around 100 cycles of the lowest-frequency mode are required to obtain accurate estimates. In the 1st 
case study, about 4 s of data were needed (lowest frequency = 20 Hz) and in the 2nd case study, about 30 s of data 
were needed (lowest frequency = 3 Hz). 
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