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Abstract
This paper addresses the design of model-based fault diagnosis schemes to detect and isolate faults occurring

in the orbiter thrusters of the Mars Sample Return (MSR) mission. The proposed fault diagnosis method is based
on aH(0) filter with robust poles assignment to detect quickly any kind of thruster faults and a cross-correlation
test to isolate them. Simulation results from the MSR "high-fidelity" nonlinear simulator provided by Thales
Alenia Space demonstrate that the proposed method is able todiagnose thruster faults with a detection and iso-
lation delay less than 1.1s.

1. Motivation

Future sciences space missions require critical autonomous proximity operations, e.g. rendezvous and docking/capture for
the Mars Sample Return (MSR) mission. Mission safety is usually guarranteed through various modes of satellite opera-
tions, with ground intervention, except in these specific critical phases, for which the on-board robustness and on-board fault
tolerance / recovery prevails in the dynamics trajectory conditions.

Satellite health (incl. outages) monitoring is classically performed through a hierarchical implementation of the fault diag-
nosis and fault tolerance in which several levels of faults containements are defined from local component/equipment upto
global system, i.e. through various equipments (sensors like IMUs, thrusters, etc..) redundancy paths. Common Fault Detec-
tion Isolation and Recovery (FDIR) implementation uses four hierarchical levels with graduated detection/isolation/reaction
to faults, see for instance [1, 2] where fault detection and isolation are performed by cross checks, consistency checks,
voting mechanisms ...etc. Fixed thresholds (once validated with all the known delays and uncertainties) are used for rapid
recognition of out-of-tolerance conditions but their setting tuned to avoid false alarms and to insure acceptable sensitivity to
abnormal deviations. Unfortunately, such classical FDIR hierarchical implementation approach does not solve, sufficiently
quickly, abnormal dynamics deviation or transient behavior in faulty situations, e.g. for rendezvous safety corridorduring
critical proximity operations, thus possibly leading to mission loss. Therefore, advanced model-basd FDI and fault tolerant
control techniques are specifically developped to safely conjugate on-board (and on-line) the necessary robustness/stability
of the satellite control and the necessary trajectory dynamics and vehicle operations.

The objective of this research is to develop an advanced model-based fault detection and isolation scheme, able to diag-
nose thrusters faults of the MSR orbiter, on-board/on-lineand in time within the critical dynamics and operations constraints
of the last terminal translation (last 20m) of the MSR rendezvous/capture phase. As mission scenario undertaken, the chaser
stays in the rendezvous/capture corridor, such that it is possible to anticipate the necessary recovery actions to successfully
meet the capture phase. Three main fault profiles are considered: locked closed thruster failure, cyclic forces/torques around
the desired force/torque profile with small magnitude and monopropellant leakage. The innovation that we pursue with this
study, is concerning the fault coverage capability, and more particularly, the ability of the fault diagnosis scheme todetect and
isolate small faults which have no significative impact on the spacecraft dynamics and/or the GNC. For instance, a thruster
locked closed is more difficult to diagnose because the thruster is not necessary used at the date of the failure, and because
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the thrusters, when they are used, achieve small pulses whose effect averaged over the control cycle is small. Such faults
are highly non-detectable using the standard industrial on-board FDIR techniques and/or ground analysis. Moreover the
uncertainty on the center of mass due to propellant motions in the tanks makes the detection and isolation more challenging.

Numerous fault diagnosis methods are applicable to this problem. In fact, most of the model-based diagnostic techniques
reported in the literature have the potential to be applied.In recent years, some effective techniques of the fault detection
and diagnosis for satellite attitude control systems basedon inertial wheels have been developed, see for instance thebooks
[3, 4, 5, 6] and the references given therein. The problem of thruster’s faults is less considered in the literature. Among
the contributions, one can refer to [7] where an iterative learning observer (ILO) is designed to achieve estimation of time-
varying thruster faults. The method proposed in [8, 9] is based on the so-called unknown input observer technique and is
applied to the Mars Express mission. Selected performance criteria are also used, together with Monte Carlo robustness
tuning and performance evaluation, to provide fault diagnosis solutions. [10] addressed the problem of thrusters faults in
the Microscope satellite and [11] considered the problem offaults affecting the micro-Newton colloidal thrust systemof the
LISA Pathfinder experiment. Both proposed FDI schemes are base onH∞/H− filters to generate residuals robust against spa-
tial disturbances (i.e. third-body disturbances,J2 disturbances, atmospheric drag and solar radiation pressure), measurement
noises and sensor misalignment phenomena, whilst guaranteeing fault sensitivity performances. Additionally, a Kalman-
based projected observer scheme is considered in [11]. [12]discusses several fault diagnostic observers using sliding mode
and learning approaches.

In this paper, the proposed FDI scheme consists of aH(0) filter with pole assignment which is in charge of residual gen-
eration for fault detection. This detection scheme allows to detect quickly any kind of thruster faults. The isolation task is
solved using a cross-correlation test between the residualsignal and the thrusters. For reduced computational burdens, the
isolation test is based on a sliding time window.
Note that a great advantage of the proposed method is that theuse of hyper-parameters used to specify the requirements in
terms of robustness and fault sensitivity performance allows the proposed technique to be re-used for other space missions
like ExoMars, Proba3, Mars Express ...etc... Furthermore,the existence of formal proofs in terms of fault sensitivityper-
formance (thanks to theH(0) index) allows to pinpoint critical faulty situations. Thismay lead to a useful tool that can be
used to analyze the robustness properties of the GNC againstfaulty situations prior identified by this tool. Thus, specific
MonteCarlo tests can be done before a complete campaign.

Notations. The Euclidean norm is always used for vectors and is written without a subscript; for example‖x‖. Simi-
larly in the matrix case, the induced vector norm is used:‖A‖ = σ(A) whereσ(A) denotes the maximum singular value
of A. Signals, for examplew(t) or w, are assumed to be of bounded energy, and their norm is denoted by ‖w‖2, i.e.

‖w‖2 =
(
∫ ∞
−∞ ||w(t)||2dt

)1/2
< ∞. Linear models, for example,P(s) or simply P, are assumed to be inRH∞, real rational

functions with||P||∞ = supω σ(P( jω)) < ∞. In accordance with the induced norm,||P||− = infω∈Ω σ(P( jω)) is used to
denote the smallest gain of a transfer matrixP. Here,σ(P( jω)) denotes the minimum non-zero singular value of matrix
P( jω) andΩ = [ω1 ; ω2] the evaluated frequency range in whichσ(P( jω)) , 0. As a direct extension, theH(0) gain of
a MIMO filter is defined according to||P||0 = limω→0 σ(P( jω)) , 0 which is known as the zero frequency gain (dc-gain).
Linear Fractional Representations (LFRs) are extensivelyused in the paper. For appropriately dimensioned matricesN and

M =

(

M11 M12

M21 M22

)

, the lower LFR is defined according toFl (M,N) = M11+M12N(I −M22N)−1M21 and the upper LFR

according toFu(M,N) = M22+M21N(I −M11N)−1M12, under the assumption that the involved matrix inverses exist.

2. Material backgrounds

Consider a dynamical system subject toqf faults fi(t), i = 1...qf . The robust fault detection problem concerns the detection
of fi(t) , 0 while guaranteeing some robustness performance level to disturbances and model perturbations.

To formulate this problem, consider the uncertain model (1)in the LFR form i.e., all uncertain parameters and model pertur-
bations have been "pulled out" so that the system’s model appears as a nominal modelP subject to an artificial feedback∆
(see figure 1 for easy reference):

(

y(s)
u(s)

)

= Fu (P(s),∆)

(

d(s)
f (s)

)

(1)
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In this formulation,x ∈ Rn, u∈ Rp, y∈ Rm denote the state vector associated to the transfer functionP, the input and the
output vectors, respectively.d ∈ Rqd is a vector of all disturbance inputs.P denotes a LTI model that includes a control law
model, and∆ is a block diagonal operator that behaves to the structure∆ defined according to:

∆ = {block diag(δ r
1Ik1, ...,δ

r
mr

Ikmr
,δ c

1 Ikmr +1, ...,δ
c
mc

Ikmr +mc
,∆C

1 , ...,∆C
mC

),δ r
i ∈ R,δ c

i ∈ C,∆C
i ∈ C} (2)

Hereδ r
i Iki , i = 1, ...,mr , δ c

j Ikmr + j , j = 1, ...,mc and∆C
l , l = 1, ...,mC are known respectively as the "repeated real scalar" blocks,

the "repeated complex scalar" blocks and the "full complex"blocks. It is assumed that all model perturbations are represented
by ∆ so that||∆||∞ ≤ 1. This can be assumed without loss of generality since the model P can always be scaled.
Now, let us consider the following general form of a residualvector:

r(s) = F(s)

(

y(s)
u(s)

)

, r ∈ Rqr (3)

The residual generation design problem we are interested incan be formulated as follows:

Problem 1 Let the LFR model Fu(P(s),∆) be robustly stable and the fault fi be observable from the output y (these are
prior conditions for the fault detection problem to be well posed). Consider the residual vector r defined by equation (3).
Our aim is to derive the state space matrices AF ,BF ,CF ,DF of the LTI filter F that solve the following optimization problem:

maxAF ,BF ,CF ,DF ϕ
s.t. ||Tf→r ||0 > ϕ

λi(AF) ∈ R ⊆ D , ∀i
, ∀∆ : ||∆||∞ ≤ 1 (4)

In (4), Tf→r denotes the transfer between f and r andD denotes the left half complex plane.λi refers to the ith eigenvalue
of the matric AF andϕ denotes the fault sensitivity performance index for the residual vector (3). The problem dimensions
are AF ∈ RnF×nF , BF ∈ RnF×(m+p), CF ∈ Rqr×nF , DF ∈ Rqr×(m+p). 2

The constraintλi(AF) ∈ R ⊆ D , ∀i refers to a robust pole assignment constraint and the performance indexϕ guarantees
a maximum faults amplificationH(0) gain, see the notation section. In other words, the problem is formulated so that the
robustness requirements againstd are specified throughR while specifying a high fault sensitivity level of the residual vector
r through the maximization ofϕ. Note that, in practice,R is a parameter to be selected by the designer since finding an
optimal region forR that guarantees high nuisances rejection, is highly related to the system under consideration.

The problem is now to establish a computational procedure for theH(0) and robust pole assignment specifications. Thus,d
is ignored from now and this boils down to a new setup as illustrated on figure 1 derived from (1) and (3) using some linear
algebra manipulations, so that:

r(s) = Fu
(

Fl (P(s),F(s)),∆
)

f (s) (5)

2.1 The SDP formulation of theH(0) specification

To achieve high fault detection performance, it is proposedin [13, 10, 14] to introduce a shaping filterWf that allows to
specify the fault sensitivity objectives. The solution of problem 1 is then handled using the following lemma, which is an
application of lemma 2 in [13] to problem 1 taking into account the definition of theH(0) gain. The proof is omitted here
since it can be found in [13].

Lemma 1 Let Wf be defined so that||Wf ||0 , 0. Introduce WF , a right invertible transfer matrix so that||Wf ||0 = ϕ
α ||WF ||0

and||WF ||0 > α, whereα = 1+ϕ. Define the signal̃r such thatr̃(s) = r(s)−WF(s) f (s) : r̃ ∈Rqr . Then a sufficient condition
for the H(0) specification in (4) to hold, is

||Tf→r̃ ||∞ < 1, ∀∆ : ||∆||∞ ≤ 1 (6)

where Tf→r̃ denotes the closed-loop transfer betweenr̃ and f .

Using the above lemma, the filter design problem can be re-casted in a fictitiousH∞-framework: Includingϕ,α andWF into
the modelP, one can derive from (5) a new modelP̃ so that (see figure 1 for easy reference)

r̃(s) = Fu
(

Fl
(

P̃(s),F(s)
)

,∆
)

f (s) (7)
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Figure 1: The fault detector design problem:H(0) (left) and poles assignment (right) specifications

Noting thatFu
(

Fl
(

P̃(s),F(s)
)

,∆
)

is nothing else than the transferTf→r̃ , it follows by virtue of lemma 1 and the small gain
theorem, that a sufficient condition for theH(0) specification to hold is

∃F(s) :
∥

∥Fl
(

P̃(s),F(s)
)∥

∥

∞ < 1 (8)

Let (Ã, B̃,C̃, D̃) be the state space matrices ofP̃ and consider the following partition of̃B,C̃ andD̃:

B̃ =
(

B̃1 B̃2
)

, C̃ =

(

C̃1

C̃2

)

, D̃ =

(

D̃11 D̃12

D̃21 D̃22

)

, Ã∈ Rñ×ñ, D̃22 ∈ R(m+p)×qr (9)

It could be verified that̃B2 = 0 andD̃22 = 0, showing that the fault detection filterF operates in open-loop versus the system.
Then, using some linear algebra manipulations, it can be verified that the closed-loop modelFl (P̃(s),F(s)) admits the state
realization(Ac,Bc,Cc,Dc) which is deduced from̃P andF as follows:

Ac =

(

Ã 0
BFC̃2 AF

)

, Bc =

(

B̃1

BF D̃21

)

, Cc =
(

C̃1 + D̃12DFC̃2 D̃12CF
)

, Dc = D̃11+ D̃12DF D̃21 (10)

From [15],Fl (P̃(s),F(s)) is stable (andF is a robustly stable filter due to the triangular structure ofAc) and there exists a
solution to (8) if and only if there existsγ < 1 and matricesA ∈ Rñ×ñ,B ∈ Rñ×(m+p),C ∈ Rqr×ñ,D ∈ Rqr×(m+p), X = XT ∈
Rñ×ñ andY = YT ∈ Rñ×ñ that solves the following SDP (Semi Definite Programming) problem:

minγ s.t.








ÃX +XÃT AT + Ã B̃1 (C̃1X + D̃12C)T

A + ÃT ÃTY +YÃ+BC̃2 +(BC̃2)
T YB̃1 +BD̃21 (C̃1 + D̃12DC̃2)

T

B̃T
1 (YB̃1 +BD̃21)

T −γI (D̃11+ D̃12DD̃21)
T

C̃1X + D̃12C C̃1 + D̃12DC̃2 D̃11+ D̃12DD̃21 −γI









< 0

(

X I
I Y

)

> 0

(11)

Moreover,F is of full-order i.e. nF = ñ. The fault detector state space matricesAF ,BF ,CF andDF are then deduced from
A,B,C,D,X andY according to the following procedure which is a direct application of the procedure proposed in [15] to
our problem:i) find nonsingular matricesM,N to satisfyMNT = I −XY (this can be done easily using the singular value
decomposition technique), and,ii) define the fault detector by

DF = D, CF = (C−DC̃2X)M−T , BF = N−1B, AF = N−1(A−NBFC̃2X−YÃXM−T) (12)

2.2 The LMI formulation of the robust poles assignment specification

Consider now the specificationλi(AF)∈R ⊆D , ∀i. Assume that the regionR is formed by the intersection ofN elementary
LMI regionsRi , i.e.R = R1∩ ...∩RN, see figure 1 for easy reference. Each LMI regionRi is characterized as follows:

Ri = {χ ∈ C : Li + χQi + χ∗QT
i < 0} (13)
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whereLi andQi are real symmetric matrices. The matrix-valued functionfRi (χ) = Li + χQi + χ∗QT
i is called the character-

istic function of the ith LMI region Ri . Then, it is shown in [16] that a sufficient condition for all eigenvalues ofAc given by
(10), lying in the regionR for all ∆ ∈ ∆ : ||∆||∞ ≤ 1 is the existence, for each regionRi , of a matrixPi andβ < 1 so that





Q(Ac,Pi) QT
1i ⊗ (PiBc) QT

2i ⊗CT
c

Q1i ⊗ (BT
c Pi) −β I I ⊗DT

c
Q2i ⊗Cc I ⊗Dc −β I



 < 0, Pi > 0, i = 1...N (14)

where "⊗" denotes the Kronecker product of matrices. The matrixQRi (Ac,Pi) is defined according to

Q(Ac,Pi) = Li ⊗Pi +Qi ⊗ (PiAc)+QT
i ⊗ (AT

c Pi) (15)

QT
1iQ2i = Qi is a factorization ofQi so thatQ1i andQ2i have full column rank.

Due to the triangular structure ofAc, it is obvious that the set of the eigenvalues ofAc are equal to the set of the eigenvalues
of Ã andAF . Thus, a sufficient condition for all fault detection filter poles lying in the LMI regionR for all ∆ ∈ ∆ : ||∆||∞ ≤ 1
(i.e for the robust pole assignment specification to hold) isthe existence of a solution to the inequalities (14). Unfortunately,
since each inequality constraint involves products of a matrix Pi , i = 1, ...,N and the fault filter variablesAF ,BF ,CF ,DF , the
resulting optimization problem is nonlinear. To reduce theproblem to a linear optimization problem, the linearizing change
of variables given by (12) can be used.
Let B̃1,C̃1, D̃11, D̃12, D̃21 be partitioned according to the dimension of∆ such that

B̃1 =
(

B∆ Bf
)

, C̃1 =

(

C∆
Cr

)

, D̃11 =

(

D∆∆ D∆ f

Dr∆ Dr f

)

, D̃12 =

(

D1∆
D1r

)

, D̃21 =
(

D2∆ D2 f
)

(16)

It follows that all eigenvalues ofAF lye in the regionR for all ∆ ∈ ∆ : ||∆||∞ ≤ 1 if there existβ < 1,A,B,C,D and
X i = XT

i ∈ Rñ×ñ,Y i = YT
i ∈ Rñ×ñ i = 1...N that solve the following SDP problem:

minβ s.t.





Li ⊗Ψ(X i ,Y i)+Qi ⊗ΦA +QT
i ⊗ΦT

A QT
1i ⊗ΦB QT

2i ⊗ΦT
C

Q1i ⊗ΦT
B −β I I ⊗ΦT

D
Q2i ⊗ΦC I ⊗ΦD −β I



 < 0

with Ψ(X i ,Y i) =

(

X i I
I Y i

)

> 0, ΦA =

(

ÃX i Ã
A Y iÃ+BC̃2

)

, ΦB =

(

B∆
Y iB∆ +BD2∆

)

ΦC =
(

C∆X i +D1∆C C∆ +D1∆DC̃2
)

, ΦD = D∆∆ +D1∆DD2∆

, i = 1...N (17)

2.3 Computational issues

From the above developments, problem 1 can be solved by jointly solving the SDP problems (11) and (17). This boils down
to a multiobjective optimization problem in the form

min εγ +(1+ ε)β s.t. (11) and (17) (18)

whereby the choice ofε is guided by the Pareto optimal points. However, in practice, β is better considered as a parameter to
be fixed toβ = 1. Thus, the resulting optimization problem looks for the best achievableH(0) objective whereas the robust
pole assignment constraint is enforced. Anyγ < 1 indicates that the obtained solution is admissible for problem 1. However,
γ ≈ 1− is required in order to obtain a low conservative solution.
Furthermore, as it is now well known, all aforementioned inequalities must be solved by using a single Lyapunov matrix for
feasibility reasons. This boils down to the additional constraintsX1 = ... = XN = X andY1 = ... = YN = Y. Fortunately, the
extra conservatism introduced by this additional restriction is modest in most applications.

3. Application to the MSR mission

The robust fault detection scheme presented in the above section is now considered for the detection and isolation of faults
occurring in the orbiter thrusters unit.

5
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3.1 Modeling the orbiter dynamics during the rendez-vous phase

The motion of the orbiter is derived from the 2nd Newton law. Because the distance between the Mars ascent vehicle and
the orbiter is smaller than the orbit, it is possible to derive the so called Hill-Clohessy-Wiltshire equations by meansof a first
order approximation. This boils down to a linear six order state space model whose inputs are a three-dimensional forces
vector. Then, considering the adequate change of coordinates, the motion of the orbiter can be described according to the
following dynamical equations:

{

ẋ = Ax+BR(Q̂tgt(t),Q̂chs(t))M(I −Ψ(t))uthr(t)+Bww(t)

y = Cx+n
, Ψ(t) = diag(ψi(t)) i = 1, . . . ,8 (19)

In (19),x∈R6 that consists of the three-dimensional positions and velocities of the orbiter is the state vector andy∈R3 refers
to the three-dimensional positions measured by means of a LIDAR unit, both given in the Mars ascent vehicle orbital frame.
uthr ∈ R8 is the controlled thrust signals given in the orbiter’s frame. Q̂tgt ∈ R4 andQ̂chs∈ R4 respectively refer to the atti-
tude’s quaternions of the Mars ascent and orbiter vehicles that are also provided by the navigation module.R(Q̂tgt(t),Q̂chs(t))
refers to a rotation matrix andw refers to the spatial disturbances, e.g.J2 disturbances, atmosphere winds..etc.n denotes the
measurement noise, considered here to be a white noise with very small variance due to the technology used for the design
of the LIDAR. M ∈ R3×8 is the (static) allocation module andA,B,C are matrices of adequate dimension.Ψ models thruster
faults, e.g. a locked-in-placed fault can be modeled byΨi(t) = 1− c

uths(t)
wherec denotes a constant value (the particular

valuesc = {0,1} allows to consider open/closed faults) whereas a fix value ofΨi models a loss of efficiency of theith
thruster.Ψ(t) = 0∀t means that no fault occurs in the thrusters.
Then taking into account the controller actions (the attitude control loop is not considered here), consideringR(Q̂tgt(t),Q̂chs(t))
Muthr(t) as the input vectoru(t) and approximating the faults modelR(Q̂tgt(t),Q̂chs(t))MΨ(t)uthr(t) in terms of additive
faults f (t) ∈ R3 acting on the state via a constant distribution matrixK f (thenK f = B), it follows that the overall model of
the orbiter’s dynamics that takes into account both the rotational (Qchs(t)) and linear translation (x(t)) orbiter motions can
be written in the form (1) withd = n. ∆ is also concerned by some unknown but bounded delays inducedby the electronic
devices and the uncertainties on the thruster rise times.

3.2 Design of the FDI scheme

3.2.1 Design of the fault detection filter

The robust fault detection scheme presented in section 2 is now considered. The problem dimensions areqf = 3,qr = 3,m=
3, p = 3. The shaping filterWf involved in lemma 1 is chosen to be a low pass filter of first order with H(0) gain the highest
possible. With regards to the robust pole clustering constraint, it is required robust pole clustering in the LMI regiondefined
as the intersection of the two following regions, i.e.R = R1∩R2:
• R1: disk with center(−q,0) and radiusρ (to prevent fast dynamics). This region is defined accordingto:

R1 =

{

χ ∈ C :

(

−ρ q
q −ρ

)

+ χ
(

0 1
0 0

)

+ χ∗

(

0 0
1 0

)

< 0

}

whereq = 0.5 andρ = 1. By this choice, it is required all eigenvalues ofAF to be close to−0.5.
• R2: shifted conic sector with apex atω and angleθ . R2 is characterized according to

R2 =

{

χ ∈ C :

(

−2ωcos(θ) 0
0 −2ωcos(θ)

)

+ χ
(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)

+ χ∗

(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)

< 0

}

where the numerical values ofω andθ are fixed respectively toω = 10 andθ = 5o. This particular region is chosen to
maintain a suitable damping ratio. Note that, as (11) enforces filter stability, it is inconsequential that the LMI region R

intersects the right half-plane.

Following the discussion in section 2.3, the fault detection filter state-space matricesAF ,BF ,CF andDF are computed so
that inequalities (11) and (17) are satisfied. As expected, the poles of the so computed filter are found to be close to≈−0.5.
Figure 2 illustrates the principal gainsTu→r( jω) (the transfer between the inputsu and the residualsr) andTy→r( jω) (the
transfer between the measurementsy and the residualsr) of the computed filterF . As it can be seen,Tu→r( jω) behaves like
a low pass filter, whereasTy→r( jω) behaves like a high pass filter. Furthermore, it can be noted that the gains ofTy→r( jω) is
always lower than 1 showing that the measurement noise is notamplified on the residualsr(t).
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3.2.2 The isolation strategy

With regards to the fault isolation task and based on the method proposed in [10], the following normalized cross-correlation
criterion between the residualsr and the associated controlled thrusters open rateuthri is used here:

i(k) = argmin
1
N

τ

∑
k=τ−N

(r j(k)− r)(uthri (k)−uthri ), i = 1...8, j ∈ {1,2,3}, t = k.Ts (20)

In (20), r, uthri , i = 1...8 andTs denote the mean values ofr anduthri , i = 1...8 and the navigation module sampling period.
For real-time reason, this criterion is computed on aN-length sliding-window. The resulting indexi(k) also refers to the
identified faulty thruster. A key feature of this isolation strategy is that it is static and then, has low computational burdens.

3.3 Simulation results
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Figure 2: The principal gains of the filterF (top left) and behavior ofr(t) andi(t) for some faulty situations.

The fault detection filterF is converted to discrete-time using a Tustin approximationand implemented within the
nonlinear simulator of the MSR mission provided. The simulated faults correspond to a single thruster opening at 100%
during the last 20m of the rendezvous. To make a final decisionabout the fault, a sequential Wald decision test applied to
||r(t)||2 is implemented within the simulator. The probabilities of non-detection and false alarms have been fixed to 0.1%.
The isolation strategy is too implemented within the nonlinear simulator withj = 1, see (20). Figures 2 illustrate the behavior
of the residualr(t) and the isolation criteriai(t), for some faulty situations, i.e. a fault occurs in the thruster n.1 (top middle),
thruster n.3 (top right), thruster n.4 (bottom left), thruster n.6 (bottom middle) and thruster n.7 (bottom right). Foreach case,
the fault occurs att = 100sand is maintained. The strategy works as follows: as soon as the fault is declared by the decision
test, the cross-correlation criterion (20) is computed. Asit can be seen on the figures, all thruster faults are successfully
detected and isolated by the FDI unit with a detection and isolation delay less than 1.1s. Note that such a strategy succeeds
since both the rotational (Qchs(t)) and linear translation (x(t)) orbiter motions have been considered. By this way, the effects
that faults have on both the orbiter attitude and translation motion, are taken into account.

4. Concluding remarks

This paper addressed the design of robust model-based faultdiagnosis schemes to detect and isolate faults occurring inthe
orbiter’s thrusters unit of the Mars Sample Return mission.The presented study focused on the orbiter spacecraft during
the rendezvous phase with the Mars ascent vehicle. The proposed fault diagnosis scheme consists of aH(0) filter with
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robust poles assignment which is in charge of residual generation for fault detection. The isolation task is solved using a
cross-correlation test between the residuals and the thrusters signals. For reduced computational burdens, the isolation test is
based on a sliding time window. The key feature of the proposed method is the use of a judiciously chosen linear model for
the design of the filter, i.e. the model consists of a 6-order model given in a judiciously chosen frame that takes into account
both the rotational and linear translation spacecraft motions. This allows to propose a fault diagnosis solution with reduced
computational burdens that is then thought to be a potentialcandidate for on-board implementation.
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