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Abstract 
Analytical solutions for variational problems on configurations of three-dimensional bodies with 
maximal lift-to-drag ratio at given base area or planform area are found within the limits of localised 
interaction between the supersonic flow and body surface. Functionals of considered variational 
problems depend on derivatives of desired function with respect to independent variables only, and 
this simplifies the solution and allows studying the structure of extremal surface. It is shown that the 
lower surface of optimal bodies is planar. If base area is given, the upper surface is cylindrical with 
generating line parallel to oncoming flow velocity vector. If planform area is given, the optimal body 
is a flat plate with the highest possible value of lift-to-drag ratio at prescribed Mach number and 
friction coefficient. The optimal body with planar upper surface is a wedge. These results are valid if 
the base pressure is taken into account and also for zero base pressure.  

1. Introduction 

Solutions of variational problems on aerodynamics of three-dimensional configurations are based on simplified 
models of supersonic flow interaction with a body. The local methods with the pressure coefficient defined by the 
angle between a normal to the body surface and the velocity vector of oncoming flow are examples of such models. 
Using the local methods there were found analytical solutions and examined configurations of planar, axisymmetric, 
and three-dimensional bodies of minimal drag [1] and, within the limits of slender bodies, of maximal lift-to-drag 
ratio [2-5]. 

Construction of a solution of variational problem about configuration of three-dimensional body is connected with 
integration of partial differential equations with unknown function of two variables. However, sometimes the 
functionals for certain variational problems on optimal configuration have the following form: 
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Extremals of the functional Ф are defined by a system: 
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which solutions are ui = const and wi = const. In other words, the extremals are the planar surfaces  
 

0=+++ iii czwxuy . 
 
In particular, considering the problem about the configuration of minimal drag Cxmin, it is easy to see that with given 
base area the functional to be optimised has a form: 
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α = (1 + u2 + w2)-1/2, and the solutions are surfaces satisfying the condition  
 

α = α* = const,  
 
where α* corresponds to minimum of the function F(α) at a segment [0,1]. 
This condition is satisfied by circular cone surfaces with semi-vertex angle β* = arcsin (α*) and planes, tangent to 
this cone. Infinite set of optimal bodies with single value Cxmin could be constructed combining the segments of these 
surfaces [6-8]. Examples of optimal three-dimensional bodies are illustrated in Fig.1. 
 

 

 

 

Figure 1 

2. Optimal configuration of given base shape 

2.1 Problem statement 

Suppose that the velocity vector v  of oncoming supersonic flow is parallel to X-axis of body-axis Cartesian right 
system of coordinates OXYZ, xv −= , where x  – unit vector of X-axis. Y-axis is pointing upwards. Let’s consider 
bodies with planar base situated in YOZ plane and the condition 0),( >= vnα  is satisfied on the surface  x = f(y,z). 
Here n  – unit vector of internal normal to a body surface element, and pressure coefficient Cp depends on α and 
Mach number M. Suppose also that friction coefficient Cf  is constant on the body surface, and tangential stress 
vector lies in the plane of vectors n  and v . 

Lift and drag aerodynamic coefficients are written in form: 
 

SbСy = ∫∫ [Cp(α) – Cf α/g] udydz     (1) 

SbСx = ∫∫[Cp(α) + Cf g/α] dydz     (2) 
Sb = ∫∫ dydz 
α = (1+u2+q2)-1/2, u = ∂f/∂y, w = ∂f/∂z, g = (1 – α2)1/2 

 
Integration is taken over the body base area Sb. 
Lift-to-drag ratio is defined by the formula 
 

K = Су /Сх      (3) 
 
and the problem is to find a function f(y,z), which realises maximum of functional (3) with given area Sb. The first 
variation of the functional (3) is δK = (δCy – KδCx)/Cx, therefore it follows from the condition δK = 0 that the 
problem is to find extremum of the functional  
 

      Φ = ∫∫ F( α, u)dydz 
F( α, u) = [Cp(α) – Cf α/g] u – K [Cp(α) + Cf g/α] + λ. 

 
Here λ – constant Lagrangian coefficient, and α, g, u – functions of variables y and z. 
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2.2 Analysis of extremal surfaces 

Equations of extremal surfaces are defined by the system: 
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which has two families of solutions [9]: 
 

w = 0,    Cp(α) – αg2Cp′(α) – K[Cf  – α2g Cp′(α)]sign(u) = 0   (4) 

u[Cp′(α) – Cf /g3] – K[Cp′(α) – Cf /(α2g)] = 0,    Cp(α) = Cf α/g   (5) 

Cp′(α) = dCp(α)/dα. 
 
The solution (4) defines a set of planes parallel to Z-axis:  х + и1у + с1 = 0,  с1 = const. 
The solution (5) defines a set of planes (symmetrical respectively to the plane XOY) that do not create lift:  

 
х + и2у + w2у + с2 = 0,  ,  с2 = const. 2

2/12
2

2
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Optimal body should be formed by segments of the planes (4) and (5) so that the lower surface is parallel to Z-axis and is 
situated at the angle of attack β1 = arcsin(α1) to the flow. The upper surface is formed by two symmetrical planes (5). 

Analysis of deduced extremal surface has shown that K maximum is realised at α2 → 0, and formulation of the problem 
should includes the surfaces with α = 0 [9]. 

2.3 Construction of a solution 

Lift-to-drag ratio is determined by the expression 
 

bfxy SSCCCK /  ),/( 000 =ΔΔ+= ,     (6) 
 
where  Cy, Cx – lift and drag coefficients of a body with α > 0, 
 S0 – area of body surface with α = 0.  
The condition of the functional (6) extremum is that the first variation vanishes: 
 

δK = δ(Cy – KCx) – KCfδΔ0 = 0    (7) 
 

It follows that a section of body surface with α > 0 is the plane (4). 

The section with α = 0 is cylindrical surface, which generating line equation is the functional Δ0 extremal. 
Let the body span is l = 2zk. The upper body surface with α=0 may consist of three sections: one curvilinear section 
and two planar sections situated symmetrically respectively to YOX plane and parallel to it. 

Area of curvilinear section is determined by integral: 
 

∫ += kz
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y′=dy/dz, y(z) – projection of curvilinear section at YOZ plane. 
 
Area of the sections parallel to YOX: 
  

2
102 kyuS = , )( kk zyy = . 

 
Total area of the upper surface  
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Therefore the problem is to find minimum of the functional  
 

∫ λ+++=Φ kz

k dzyyy
0 1

2/122 ])'1[(2/ ,   (8) 

 
λ1 – constant Lagrangian coefficient. 
 
It follows from the analysis of the functional (8) extremals that if the coordinate zk is not given then optimal body is 
two-dimensional wedge with upper surface parallel to the velocity vector v . 

If the body thickness y(0) = y0 and area Sb are given  
 

0)( ytzzy +−= ,       bSyt /2
0=

 
then optimal body is delta wing with wedge-like profile. 

If the body span l = 2zk and base area are given then the base contour is determined by the relations: 
 

z = [ λ1(ay2 + by + c)1/2 + c1I ]/a,  
a = 1 - λ1

2,  b = 2λ1a/(1 + I*),  c = - a2/(1 + I*),  c1 = - c/a,            (9) 
I* = ⎜a ⎜-1/2 [π/2 + arcsin(⎜λ1⎜-1)],  
I = ⎜a ⎜-1/2 [π/2 + arcsin(⎜λ1⎜- (1 + I*)y)]  

 
Here all linear dimensions are given in ratio to zk. 

Optimal contours of base area are presented in Fig.2 with different Δk = Sb/2zk
2; three-dimensional view of optimal 

body is illustrated in Fig.3. The body base shape does not depend on u1, M, Cf,  and, consequently, on specific form 
of the dependence Cp(α). 
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Figure 2     Figure 3 

 
Let’s determine the angle of attack β1 and maximal lift-to-drag ratio at γ=1.4, using the local wedge formula [8] 
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The values β1

* and K* for optimal two-dimensional wedge at γ=1.4 are presented in Tables 1 and 2, correspondently 
(the upper figures in the cells). 
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Table 1  Table 2 
∗β1 , degree  K* M 

Cf = 0.001 0.002 0.003  
M 

Cf = 0.001 0.002 0.003 

6 4.32 
4.41 

6.00 
6.12 

7.24 
7.51 

 6 7.34 
7.50 

5.42 
5.53 

4.55 
4.60 

10 5.32 
5.52 

7.19 
7.39 

8.49 
8.71 

 10 6.37 
6.50 

4.83 
5.00 

4.13 
4.40 

15 5.96 
6.10 

7.82 
8.01 

9.11 
9.31 

 15 5.96 
6.20 

4.61 
4.81 

3.97 
4.20 

∞ 6.75 
7.00 

8.50 
8.70 

9.72 
10.02 

 ∞ 5.59 
5.80 

4.41 
4.61 

3.84 
4.05 

 
For bodies defined by the formulas (9) the optimal angle β1 and maximal lift-to-drag ratio K are plotted against Δk in 
Fig.4 for Cf =  0.002 and M=6; 10. Note that β1 values are close to β1

* (β1 –β1
*< 30′). 
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Figure 4 

Values of lift-to-drag ratio of optimal bodies with triangular and curvilinear base with similar area Sb and length L 
are close. At the same time span of optimal delta wing is 1.5 times greater than span of a body defined by the 
relations (9). 

If the base contour is given, the curve y = y (z) is guiding line of the upper cylindrical surface with generating lines 
parallel to X-axis. Configurations of optimal bodies with various base shape are illustrated in Fig.5 at Sb/yo

2 = π/2,  
M = 15, Cf  =  0.002. Corresponding pairs of (β1, K) values are: 1 – (8.21°, 4.40), 2 – (8.09°, 4.46), 3 – (8.1°, 4.45). 

     1 2 3 
 

Figure 5 
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3. Optimal configuration of given planform 

Let’s consider bodies, such that depression flow is realised at a part of their surface. The equation for the lower body 
surface takes form: y + f1(x, z) = 0, and for the upper surface: y + f2(x, z) = 0. Here at the lower surface the pressure 
coefficient Cp1 > 0, and at the upper surface Cp2 ≤ 0. With assumptions accepted in previous section, aerodynamic 
coefficients are determined by the formulas 
 

           ∫∫ Δ−Δ−−= dxdzCCCCCS ffppyb )//( 211121

∫∫ Δ+Δ+−= dxdzCCuCuCCS ffppxb )( 21112211    (11) 

        ,  xy CCK /= ∫∫∫ = dxdzSb  

 
Integration is taken over a section in XOZ plane corresponding to body planform area. 
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Determination of a configuration of maximum lift-to-drag ratio is reduced to finding the minimum of the functional 
 

∫∫=Φ dxdzwuF ii ),(      (12) 

2211121211121 )(// λ+Δ+Δ+−−Δ−Δ−−= ffppffpp CCCCKCCCCF , 
 
λ2 – constant Lagrangian coefficient. 

Extremal surfaces are defined by the system of equations: 
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For the upper and lower surfaces these equations have two families of solutions for each surface. The first family for 
the lower surface defines planar surfaces parallel to Z-axis: 
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The second family is defined by the equations: 
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The first equation in (15) conflicts with the condition Cp1 > 0 and corresponds to zero drag of the lower surface that 
has no physical meaning. Consequently, the lower surface of the optimal body is a plane parallel to Z-axis. The angle 
of attack for this plane β1 = arctgu1 is determined from the equation (142). It can be shown by analogy that the upper 
body surface is also a surface parallel to Z-axis (w2 = 0).  

Therefore the upper and lower surfaces of the body are the planar surfaces, and the optimal body is a flat plate with 
the angle of attack β1. 
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In fact, analysed problem statement does not include planes parallel to Y-axis, which add non-zero thickness to the 
optimal body. But such planes make the drag greater and do not influence upon the lift, so they reduce lift-to-drag 
ratio K. That is why such planes can’t be the extremals. 

Let’s analyse two limiting cases of discussed problem solutions: β1(M2-1)1/2 << 1 and sinβ1(M2-1)1/2 >> 1.  

For the first case: 
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For the second case, according to (10) 
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The equation (142) for the upper surface becomes an identical relation valid with arbitrary u2 > 0. Therefore in this 
case u1 = u2 too. Correctness of the condition u1=u2 for finite values of Mach number was checked by numerical 
optimization of bodies of various planform with the help of the code [10]. Optimal values for β1 and K of a flat plate 
are presented in Tables 1 and 2, correspondingly (the lower figures in cells); it is seen that at moderate Mach 
numbers the flat plate has lesser angles of attack β1 and greater K values as compared with two-dimensional wedge. 

3.1 Optimal configuration of given planform and planar upper surface 

Let’s examine a body, which upper surface coincides with XOZ plane, and its length equals 1. In accordance with the 
above analysis the lower surface is planar. Obviously, for constructing the closed body surface it is necessary to 
introduce a cylindrical surface with generating lines parallel to Y-axis. For this purpose consider a body formed by 
two planes y = 0 and y = u1x and cylindrical surface z = f(x). The problem to find a configuration of maximal lift-to-
drag ratio with known u1 and given planform area is reduced to searching an extremal of the functional 
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Equations for the extremal and boundary conditions are written in form: 
 

0,0 '' ==+ zz FF
dx
dλ  at x = 0  and at x = 1 . 

 

It follows that λ=0 and the extremal is a straight line z = c = Sb/2. 

Thus if the upper surface is planar then optimal body is a wedge. Obviously, the greater is span the greater is K 
value. It is noted that for all examined cases this solution is true also if base drag is taken into consideration on the 
condition that pressure coefficient in the base region is constant Cpb=const. 

4. Conclusion 

The result of the analysis with assumption about local character of force interaction between the flow and body 
surface are analytical solutions on configurations of maximal lift-to-drag ratio at supersonic flow velocities. For 
given base area or given planform area the lower (windward) surface of the optimal body is flat. This conclusion 
agrees with the research results on the influence of V-shape upon a value of lift-to-drag ratio of V-shaped wings at 
supersonic Mach numbers [11]. 
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Construction of solutions for variational problems was generated with minimal constraints on a body shape – either 
base area or planform area. Therefore values of lift-to-drag ratio of optimal configurations are extremely accessible 
or upper bounds of lift-to-drag ratio at supersonic velocities.  
 
The analytical results do not conflict with numerical data on investigation of configurations like waveriders [12, 13]. 
This is additional argumentation in favour of taken local approach, which allows, the same as for the problem on a 
body of minimal drag [6-8], finding the solutions consistent with the solutions found with more accurate assumptions 
about the character of force interaction between a flow and body surface. 
 
 
The work is supported financially by Russian Foundation for Basic Researches (project 09-01-00171a). 
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