Ignition Length Study of JP-8+100 in a Supersonic Duct

M. L. Bateup PhD candidate (submitted) The University of Queensland Brisbane, Queensland, Australia

Abstract

In scramjets, hydrocarbon fuels are being considered for their endothermic potential and for use in flights where compact, volume critical designs are required at flight speeds at Mach 5+. Long-chain hydrocarbon fuels, like aviation kerosene, have handling and storage advantages over hazardous and volatile fuels, like hydrogen, that are more aligned with current flight systems. This research investigates the conditions under which kerosene fuel (JP-8+100) may be used in a supersonic duct at a hyper velocity impulse facility. Experimental data on kerosene ignition lengths for temperatures in the range 1100–1550 K, pressure of 1 atm, and equivalence ratios of 0.2–2.5 are compared with ignition delay correlations from literature.

1. Introduction

This paper reports on a study of the ignition length of long chain hydrocarbon (kerosene) based aviation fuel in a scramjet combustor. This is the first part of an investigation examining the effects of adding supplementary ethylene to the aviation kerosene. Ethylene combustion in a supersonic flow stream produces a vigorous and rapid combustion onset, much like that of hydrogen [1]. Improving the long chain hydrocarbon (LCHC) ignition length would result in a shorter combustor and reduction in associated skin-friction drag and heat transfer. LCHC fuels suffer certain drawbacks when applied to a scramjet engine where the airflow through the combustor is of the order 2km/s. Chief amongst these are the time required for ignition to commence and thermal stability of the fuel [2]. The long delay for LCHC fuel ignition results in scramjet combustors of the order of metres long. This is prohibitive for a volume-constrained aircraft. By augmenting LCHC with the addition of ethylene, it may be expected to react more like ethylene and result in improvements to combustor efficiencies for LCHC fuels. Before ethylene augmentation tests can be examined, a baseline for the ignition length of LCHC fuel (without ethylene augmentation) in a scramjet combustor must be established. The particular LCHC fuel used was JP-8+100.

In order to test LCHC fuels, ground-test facilities must be able to deliver fuel at an equivalent condition as experienced in flight. It's reported [3] that continuous flow facilities require in the order of 2 MW of power per kg/s of feed fuel to replicate the appropriate fuel injection composition, temperature and pressure. Furthermore, for the quantity of fuel required, the facility requires additional infrastructure to manage fuel pre-heating as well as condensers and containment to deal with possible failures of the system. Impulse facilities have the benefit of extremely short test duration, such that the amount of fuel injected per test is of the order of a few grams for a few milliseconds; thereby avoiding hefty power and infrastructure requirements. The drawback with impulse facilities is the same short test duration - which limits the use of slow-ignition liquid hydrocarbon fuels. There is usually insufficient time for the fuel to be injected, vaporise, mix, and react within the available length of combustor.

This paper presents the results of an ignition length study with JP-8+100 using a fuel vaporiser suitable for use with an impulsive hypervelocity test facility[3]. Results of tests on JP-8+100 with ethylene augmentation are the subject of subsequent papers.

Facilities such as heated reflected shock tubes and well-stirred reactors are better suited to investigate ignition delay correlations and chemical kinetics than the supersonic duct combustion chamber used for this study. The goal of this research was not to replicate ignition correlations, but to investigate how well those correlations may be applied to a generic supersonic duct.

2. Experimental Setup

Flow within the supersonic duct was generated by the University of Queensland's T4 free piston reflected shock-tube impulse facility [5][6][7]. The representative nozzle-supply conditions were 35 MPa, 3.2 MJ/kg air which was expanded to Mach 6.7 at the nozzle-exit and was further processed by a pair of compression wedges into the model. The experiments were conducted at a duct entry condition of Mach 2.7, static pressure of 85-135 kPa and static temperature between 1100 K and 1550 K. The principal variable controlling ignition was the temperature, so a wide range in this parameter was desirable. In order to limit the test-to-test variation in ignition length due to pressure, the target duct entry pressure was a nominal 1 atmosphere. Where 1 atmosphere was not achieved, ignition length data was scaled by an inverse pressure relation, P^{-1} .

Figure 1: Schematic of the experimental model (adapted from [8])

The experimental model [9] consisted of a set of inclined plate compression wedges ahead of a parallel combustion duct, with a central strut fuel injector (refer Figure 1), where flow is from left to right. The model was 1.75 m in length, with a 1.2 m combustor of 0.1 m x 0.47 m cross section. The air entering the combustion duct was in the range 1810 m/s to 1970 m/s for the 3 to 3.5 MJ/kg condition. In order for ignition to be observed within the duct, the ignition delay needed to be less than 0.7 ms at 1 atm. Based on ignition delay correlations for JP-8 and Jet-A [10][11][12][13][14], it was reasonable to expect JP-8+100 to ignite within the duct at temperatures 1300 K and above.

A fuel supply system was developed [4] that was capable of delivering gaseous blends of hydrocarbon fuels within the 2-3 ms test time available at the impulse facility. JP-8+100 was vaporised prior to injection into the supersonic duct, by means of a heated Ludwig tube commissioned for this study. The vaporiser system was capable of blending gaseous ethylene and liquid kerosene. The thermal control of the system moderated the fuel between 650 K to 700 K such that two-phase gaseous-liquid regions were avoided. These were detrimental to the operation of the system, as was the deposition of gum and sooting from JP-8+100 pyrolysis and reformation.

Pressure was measured at 20 mm intervals along the duct. It was the primary means of observing ignition and combustion. Two baseline cases were established. One was a fuel-off case with air as the test gas and no fuel injection, and the other was a supressed combustion case. The later occurs when fuel is injected into a nitrogen test gas to allow the effect of fuel addition to be isolated in the absence of combustion. In subsequent fuel-on tests, any pressure rise in excess of the baseline cases may be attributed to combustion. The ignition length was determined as the axial location where the fuel-on coefficient of pressure (C_P) departed from the baseline cases in a sustained pressure rise which achieved and maintained an increase of 0.1 C_P above the baseline at the end of the duct. The reference pressure and dynamic pressure used in the calculation of C_P were taken at the duct entry conditions. Ignition was assumed to occur within the mixing layer. This was assumed to be, to first approximation for this experimental configuration, parallel with and at the same transverse location as the surface of the strut injector [8]. A correction was applied to the measured ignition length to account for the axial displacement as the pressure increment propagated across the duct by means of a Mach wave to be measured at the wall. For the presented examples, this was a 49mm axial off set. While only first-order accurate, this correction was consistent across all tests.

Experimental uncertainty of key parameters was 11%, 2% and 5% for duct entry temperature, pressure and Mach, respectively. The uncertainty of coefficient of pressure, C_P , in the ignition region was 10%.

3. Results and Discussion

Tests were carried out on 94-100% molar blends of JP-8+100 with ethylene. To differentiate between blended fuels, the nomenclature used to refer to each blend is 'CnHm' for the carbon:hydrogen ratio on a molar basis. JP-8+100 was modelled as $C_{12}H_{24}$ after [15]. Where a fuel percentage is identified, it refers to the mole fraction of JP-8+100 and the complementary percentage is ethylene. Results from blended fuel tests of 50% - 86% ethylene are to be reported in subsequent papers.

An example of a test with 100% JP-8+100 fuel at an equivalence ratio of 1.5, injected into 1530 K airflow at Mach 2.7 is presented in Figure 2, where flow is from left to right. The figure presents the variation in C_P along the duct commencing from the point of fuel injection. The baseline cases of fuel-off and suppressed combustion cases are shown, along with the fuel-on case. A strong expansion and shock structure within the duct is evident. These are a result of expansions and recompression shocks which occur at the step-change in geometry at the rear of the central strut. The difference in C_P (Δ C_P) between the fuel-on and the baseline cases is also presented, along with a four-point running average. The increase in Δ C_P of 0.15 above the baseline demonstrates that a sustained pressure rise in a supersonic duct was achieved. This result also demonstrates that the fuel supply vaporiser operated satisfactorily and may be used to conduct further research. The ignition length for this particular test occurred between 417–437mm (less the 49mm correction). At a temperature of 1410 K it was observed (Figure 3) that ignition occurs further towards the rear of the duct, as expected, between 497–517 mm. When the temperature was reduced to 1320 K it was observed (Figure 4) that ignition occurs further towards the rear of the duct between 917–937 mm. These results were consistent with the anticipated result of Arrhenius-type ignition delay correlations [10][11][12][13][14][16][17] [18][19][20], where ignition delay is a strong function of temperature.

Ignition length measurements were made with a duct inlet condition between 1100–1550 K at pressures from 85–135 kPa and equivalence ratios 0.2–3.0. The experimental data is presented in Figure 5 along with a least squares Arrhenius fit and 95% confidence interval. The ignition 'length' has been converted to an ignition 'delay' by the duct inlet velocity, and uses an inverse temperature abscissa. The regression fit and confidence interval are compared with correlations for JP-8 5 [10] and Jet-A [11][12][13][14] in Figure 6. All experimental data and correlations are scaled to 1 atmosphere for the comparison.

It was observed that there is significant scatter within the data for a given temperature, of the order 45%, which represents the variation due to the experimental apparatus for measuring ignition length in a scramjet duct, as well as the inherent repeatability of ignition delay studies. Flow within the duct has inherent non-uniformities and is not a homogenous fuel-air mixture as in shock-tube studies of ignition delay (for example [10]) or with continuous control over flow variables (such as in [16]). However, the amount of scatter is consistent with the 42% reported in [18] as typical variation in length for shock-tube ignition delay studies. The Arrhenius fit to the data agrees well with the presented correlations. The slope of the Arrhenius fit in Figure 6 (representing a suggested activation energy of 29.3 \pm 8.9 kcal/mol for the fuel) is in keeping with those of JP-8 and Jet-A This was an anticipated result as the base fuel-stock is from the same family of aviation kerosene. The large uncertainty on activation energy was due to the amount of experimental scatter, suggestive of apparatus-dependent phenomena. Despite the scatter, the apparent activation energy is in agreement with the reported values for JP-8 (29kcal/mol, [10]) and Jet-A (27.8 kcal/mol [12] and 29.2 kcal/mol [21]). All of the tabulated activation energies lie within the experimental uncertainty.

The strong similarity between the reported correlations [10][11][12][13][14] and the experimental data demonstrates that the ignition delays observed in the impulse facility correlate with those previously observed in other facilities. The correlations closely predict the ignition delay and activation energy of the fuel at experimental conditions of 1 atmosphere and temperature range 1250 K to 1600 K. The correlations for ethylene [17][19] are depicted in Figure 5 and Figure 6 for comparison with the future ethylene augmentation study.

The point of difference in the current study is that the experimental data were obtained from a supersonic duct, with non-uniform flow and non-homogeneously mixed fuel. This is different from how the ignition delay studies are typically made. They use a reflected shock tube with a homogeneous fuel and oxygen mixture which is subjected to a sudden rise in temperature and pressure from a reflected shock wave [10]. The resulting ignition delay correlations are regarded to be applicable under similar pressure and temperature conditions to those of the experiments from which they were derived. When the correlations were scaled to atmospheric pressure, they matched the experimental data. Therefore, the JP-8+100 study justifies the use of ignition delays found from conventional shock tube studies for application in a scramjet duct. This is strong indication that the JP-8+100 ignition delay is reaction limited, not mixing limited.

Figure 2: C_P versus Length for JP-8+100 ignition length at 1530K

Figure 3: C_P versus Length for JP-8+100 ignition at 1410 K

Figure 4: C_P versus Length for JP-8+100 ignition at 1320 K

Figure 5: Experimental data for the ignition delay of JP-8+100 in a supersonic duct

Figure 6: Comparison of the JP-8+100 fit with Jet-A and JP-8 correlations

The experimental data are compared with ignition delay data for JP-8 and Jet A from a heated shock tube across the range 715 K to 1229 K [20] in Figure 7. Both sets of data display a consistent activation energy in the region above 900 K. Below 900 K, there is evidence of the negative temperature coefficient region, where the slope of the Arrhenius-like exponential temperature dependency is reversed [20][22][23][24]. While the regression fit to the JP-8+100 data should not be extrapolated beyond the range of the experimental data (1100 K to 1600 K), it is shown to be consistent with JP-8 data between 1000 K and 1229 K.

Vasu's data [20] shows the difference in ignition delay at equivalence ratio of $\Phi = 1$ and 0.5. This reduction in Φ had the effect of increasing the ignition delay by 40% at 1080 K. The same influence of Φ on ignition delay is reported for Jet A and JP-8 from shock tube studies [12][23][25][26]. Equivalence ratio variation may explain the scatter observed in the experimental results for JP-8+100.

Figure 7: Comparison of JP-8+100 data with JP-8 and Jet-A data from [20]

4. Conclusions

The JP-8+100 experimental study shows that traditional correlations can be used to effectively predict the ignition delay times of long-chain hydrocarbon (LCHC) fuels in a scramjet combustor, provided pressure effects are taken into account. This is an important finding which allows the correlations to be used with confidence in scramjet combustor design and CFD simulations of LCHC combustion in supersonic ducts. The fact that multiple Jet-A and JP-8 correlations are closely aligned to the regression fit, gives confidence that the calculated duct inlet temperatures are near the middle of the measurement uncertainty for temperature and not at the $\pm 11\%$ limit. The correlations are a validation of the regression and the temperature calculation.

The data presented for JP-8+100 conclusively shows that a pressure rise occurred that can be attributed to the heat release from combustion. The examples represented 0.94 to 1.0 mole fraction JP-8+100 mixtures. This demonstrates that the fuel injection system can be used to study combustion of JP-8+100 in a supersonic flow stream in an impulse

facility. For the current experimental configuration, the earliest possible point of ignition was limited by the presence of a strong expansion and shock system extending 100 mm downstream of the strut injector.

Combustion of JP-8+100 was found to have an apparent activation energy of the order 29 kcal/mol. The comparison with ignition correlations from premixed homogenous tests provides good evidence that JP-8+100 combustion in a supersonic flow stream is reaction-limited.

The ignition delay and ignition temperature is not an absolute property of a substance. Therefore empirical relations will have an inherent degree of uncertainty related to the nature of the test apparatus and methods used for their determination [27]. Yet, despite the scatter in the data, the results of the present study correlate well with published correlations for JP-8 and Jet-A from a broad range of fuel-stocks and researchers.

Acknowledgement

This work was made possible through the support of the Australian Department of Defence, Defence Science and Technology Organisation and the University of Queensland, as well as the on-going encouragement of Adjunct Professor A. Paull and Professor D. Mee.

References

- [1] Paull, A., R. J. Stalker, et al. (1995). "Experiments on supersonic combustion ramjet propulsion in a shock tunnel." *Journal of Fluid Mechanics* 296: 159-183.
- [2] Edwards, T. (2006). "Cracking and deposition behaviour of supercritical hydrocarbon aviation fuels." *Combustion Science and Technology* 178(1-3): 307-334.
- [3] Maurice, L., T. Edwards, et al. (2000). Scramjet Propulsion. Scramjet Propulsion. E. T. Curran and S. N. B. Murthy, AIAA: 1293.
- [4] Bateup, M.L., (2012) Ethylene Augmentation of JP-8+100 in a Supersonic Combustor, PhD thesis (submitted for examination), The University of Queensland
- [5] Stalker, R. J. & Morgan, R. G. (1998) The University of Queensland free piston shock tunnel T4 initial operation and preliminary calibration. *4th International Space Engineering Symposium*, Brisbane, Qld.
- [6] Stalker, R. J. (1990) Recent developments with free piston drivers. *17th International Symposium on Shock Waves and Shock Tubes*, 17-21 July 1989 Bethlehem, PA. American Institute of Physics, 96-105.
- [7] Paull, A. & Stalker, R. J. (2000). Scramjet testing in the T3 and T4 hypersonic impulse facilities In: Curran, E. T., Murthy, S.N.B. (ed.) Scramjet Propulsion. Reston, VA: AIAA.
- [8] Razzaqi, S. A. (2011). Oxygen enrichment in a hydrogen fuelled scramjet. PhD., The University of Queensland.
- [9] Jacobs, P. A. (1989). A scramjet model for pressure scaling studies. St Lucia, Queensland: Department of Mechanical Engineering, The University of Queensland.
- [10] Kahandawala, M. S. P., M. J. DeWitt, et al. (2008). Ignition and emission characteristics of surrogate and practical jet fuels. *Energy and Fuels* 22(6): 3673-3679.
- [11] Dean, A. J., O. G. Penyazkov, et al. (2007). Autoignition of surrogate fuels at elevated temperatures and pressures. *Proceedings of the Combustion Institute* 31(2): 2481-2488.
- [12] Starikovskii, A. Y., V. I. Khorunzhenko, et al. (2003). Investigation of thermodynamic properties and ignition of kerosene-air mixtures behind reflected shock wave front. Technical Report. Moscow, Moscow Institute of Physics and Technology.
- [13] Burcat, A., E. Olchansky, et al. The Pursuit after a Model of Kerosene Combustion: An experimental and modelling study of ignition delay time of kerosene, Unpublished - personal communication, Technion - Israel Institute of Technology & DLR.
- [14] Zimont, V. L. and Y. M. Trushin (1969). "Ignition lag of hydrocarbon fuels at high temperatures." *Combustion, Explosion, and Shock Waves* 3(1): 51-56.
- [15] Wang, T.-S. (2001). Thermophysics Characterization of Kerosene Combustion. *Journal of Thermophysics and Heat Transfer*, 15, 140-147.
- [16] Mullins, B. P. (1952). Studies on the spontaneous ignition of gas turbine fuels injected into a hot gas stream. Ph.D. U243428, University of London, External Degree (United Kingdom).
- [17] Colket III, M. B. and L. J. Spadaccini (2011). Scramjet Fuels Autoignition Study. *Journal of Propulsion and Power* 17(2), 315-323.

- [18] Shen, H.-P. S. (2008). Shock tube ignition delay studies of hydrocarbon components found in jet fuels. Ph.D. 3357241, Rensselaer Polytechnic Institute.
- [19] Baker, J. A. & Skinner, G. B. (1972). Shock-tube studies on the ignition of ethylene-oxygen-argon mixtures. *Combustion and Flame*, 19, 347-350.
- [20] Vasu, S. S., Davidson, D. F. & Hanson, R. K. (2008). Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions. *Combustion and Flame*, 152, 125-143.
- [21]Zimont, V. L. & Trushin, Y. M. (1969). Ignition lag of hydrocarbon fuels at high temperatures. Combustion, Explosion, and Shock Waves, 3, 51-56.
- [22] Dagaut, P. & Cathonnet, M. (2006). The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modelling. Progress in Energy and Combustion Science, 32, 48-92.
- [23] Dean, A. J., Penyazkov, O. G., Sevruk, K. L. & Varatharajan, B. (2007). Autoignition of surrogate fuels at elevated temperatures and pressures. *Proceedings of the Combustion Institute*, 31, 2481-2488.
- [24] Westbrook, C. K., Pitz, W. J., Herbinet, O., Curran, H. J. & Silke, E. J. (2009). A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. *Combustion and Flame*, 156, 181-199.
- [25] Kumar, K. & Sung, C.-J. (2010). An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8. *Combustion and Flame*, 157, 676-685.
- [26] Puri, P., MA, F., Choi, J.-Y. & Yang, V. (2005). Ignition characteristics of cracked JP-7 fuel. Combustion and Flame, 142, 454-457.
- [27] Spadaccini, L. J. & Tevelde, J. A. (1982). Autoignition characteristics of aircraft-type fuels. Combustion and Flame, 46, 283-300.