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Abstract

The interest in orbital non-cooperative rendezvistexpanding as it could allow satellite servicorg
space debris deorbitation. In this paper, a navgasolution is presented for non-cooperative
rendezvous using scanning LIDAR measurements aeclange. The complete 6-DOF relative state is
estimated with ICP algorithm in closed-loop witKalman filter. The ICP algorithm matches two sets
of model and measured points to calculate relatttibude and position. This information is the ihpu
of a Kalman filter, using free-rotating object etjaas for attitude estimation and translation euret

of motion for a spacecraft relative to an elliptiszplerian reference orbit for position estimatidm
attitude estimation algorithm is used to initialig@P algorithm, making the presented navigation
solution complete and independent.

1. Introduction

A rendezvous simulator was developed to implemgstrtavigation solution and simulation results presented for

a debris representative of H10 Ariane 4 upper stélgis target is cylinder shaped and presents syimgraeound roll
axis, making the attitude estimation particularhakkenging.Simulations are run using a sensor model and give
results in terms of relative position and attituaeors for rendezvous with a space debris. Trapnsland angular
velocities are also estimated by the navigationtsmi. Different relative trajectories are testeddistances between
100m and 25m (station-keeping, linear approachkafund).

The interest of adding extended Kalman filter tdPI@lgorithm is investigated showing promising resulhe
specific 6DOF initialization issue is addressedider to propose a full navigation architectureusoh based on
sensors suite composed of star-tracker, gyrometecglerometers and LIDAR.

1.1 Overview

Significant progresses have been made in orbitadleavous these last years. For example, Automatedsfer
Vehicle (ATV) is capable to perform an autonomoesdezvous with the International Space StationesR@08.
Nevertheless, information about target’s positiod attitude is provided to the chaser vehicle aiffgérént helps
like reflectors can be used to facilitate the remwoes.

The problematic of non-cooperative rendezvous ipadorm the same operation with space objects lantb
provide any information about their state to thasgr. Furthermore, the targets could be spacesdfelrivhich no
docking port or specific materials to facilitatendezvous exist. In that frame, the chaser vehidlkstrbe able to
make a complete relative navigation to approacharget by using only measurements from its embe&deasors.
In this paper, the close rendezvous is studiedgusinscanning LIDAR sensor, based on laser Timeligiftf
principle to give coordinates of points hitting tterget. It has the advantage of providing infoioratdirectly

exploitable by the navigation and it is not seresital illumination conditions, unlike camera senstt®AR points

are processed by a navigation solution to estirhatk relative position and attitude. The particutgerest of this
solution is to use jointly attitude and positiotireation algorithm with a Kalman filter to benefibm knowledge of
the target’s dynamics evolution.
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1.2 Related Work

Different solutions exist and have already beeulietliin the literature. We can distinguish algarithadapted to
monovision and those adapted to cloud of 3D paititich can be obtained with stereovision or LIDARSars.

In [1] and [2] both position and attitude are estied at close range by using a monocular senseoniists in
matching edges with a geometric model of the tarffe¢ initialization problem was not studied. Theng principle
is used in [3] but a Kalman filter is implementes Use dynamics equations. All these solutions ttheesame
drawback of using data that must be processedttaatuseful information like edges and cannotmeste easily all
the attitude configurations as the sensor inforomais limited.

In [4], the Iterative Closest Point algorithm isedswith clouds of 3D points obtained with steremrisor LIDAR
sensor. The ICP algorithm is in closed-loop withKalman filter. This solution shows good results hwin
experimental setup. However, the initializationlgem is not addressed in this paper.

[5] shows techniques to initialize the attitude doclose rendezvous navigation algorithm. Polygésqlect Hashing
and Geometric Hashing are adapted to cloud of 3Btpand could be used in a first-step before lg@ridhm. [6]
uses voxel representation from 3D measurementstitoae inertia matrix of the target and deducattitude. This
algorithm does not need any initialization and ddu used to give a first estimate to another radiig algorithm.

[7] presents an algorithm adapted to stereovisemsars. Feature points are used to reconstruattsrghape and
estimate relative state between the chaser anththet. An Extended Kalman Filter is used basetherdynamics
equations.

1.3 Notation and coordinate frames

Zchaser

XLVLH Ychaser

Xchaser

YLvLH ZiyiH

Ytarget Xtarget

Zinertial

Yinertial Zlarget

Xinertial

Figure 1: Coordinate frames used for navigation
Measurements provided by the LIDAR are 3-D poimtpressed in chaser frame. Thus, the measuremeats ar
representative of target’s position and attitudgressed in chaser frame.

The absolute navigation of the chaser gives inféionaof position and attitude of the chaser framthwegard to
the inertial frame. Furthermore, equations of theainics of the target are known with respect te ithértial frame.
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Finally, LVLH frame (Local-Vertical Local-Horizontpis used to express translation equations of omofor a
spacecraft relative to an elliptical Keplerian refece orbit. The LVLH frame is expressed as foltoavaxis points
toward the Earth (local vertical), x-axis is in thgocity frame and orthogonal to z-axis and fipghaxis completes
the orthogonal frame.

In the equations listed above, rotations are remtesl by quaternions. A quaternion is composed sdadar and
vectorial part.

o
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The rotation is expressed as a rotation-&iand an angle of rotatiéR around this axis.

2. Navigation Description

In this section, the algorithms used in the navigasolution are described. This solution is forntédhree main
blocks which are the pose estimation algorithm ridwgigation filter and the attitude initializatiatgorithm.

2.1 Overview

Chaser absolute Measurements

navigation (6 d.o.f)
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Figure 2: Navigation solution structure
This figure shows the general structure of the gatidn solution. The ICP algorithm needs to beadlited at the

first iteration, and then the algorithm runs insgld loop with a navigation filter. The estimatidraa iteration k is
used as initialization for the ICP algorithm atation k+1.

2.2 Pose estimation algorithm: Iterative Closest Point (I CP)

Iterative Closest Point is a model-based iteragilg®rithm for attitude estimation of a target. Tegts of points are
required: a set of data points and a set of pdiata the geometric model of the target.
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Therefore, this algorithm is adapted to clouds @ Boints which are directly obtained with LIDARrs®r. This
algorithm provides the quaternion and the trarmatiector of the target with regard to the chasamé. The
guaternion is a rotation representation directi¢did to the attitude matrix A (or rotation matriXhe rotation matrix
and translation vector r applied to measured poirasches them to the model points. aad p are attitude matrix
and translation vector used for initialization.

The first step is to find the correspondence betwdsta points and points from the model. For eaehsured point,
the following optimization problem is resolved:

v, =argmin| A, (U, +1,) -V,
v;OM

,|:|| =1...m (2)

Then, the second step is to find the attitude matrid translation vector which minimize the err@tvieen the
rotated and translated measured points and thelmpoités.

{r, A} =argmin| Ay, +r)-v,|*,0v, OV, 0Oy, OU 3)
rA
New temporal
iteration: Initialization Cloud of
provided by the filter 3-D points
when k>1

" ] Step 1: Match I
. Information —» measures/model !
1 for |
*initialization .
! of the next v |
1 ICP iteration : I 3D model
. Step 2: quaternion and .
! translation vector estimation
|
; v !
! Superior to |
! threshold crite .
I rion .
i Inferior to -
. threshold '
! I
| e e i et e s e s = - L = = a
ICP algorithm

Estimated quaternion
y and translation vector
for iteration k

Figure 3: ICP algorithm

In [4], a method to calculate directly the optinsallution for the quaternion and the translationteeaevithout
solving the optimization problem is presented. €smated position and attitude are given with reéga the sensor
frame. In this study, we consider that the sensoné is identical to the chaser. Thus, we havectlir@osition and
attitude expressed in chaser frame.

This algorithm needs a good initialization to pawicorrect results. Otherwise, the ICP could cagevdoward a
local minimum. The solution of the previous iteoatican be used to initialize the algorithm at tegtiMmeasurement.



LIDAR-BASED POSE ESTIMATION FOR NON-COOPERATIVE RENDEDUS

However, two problems remain: the algorithm is #@msto noise and obstruction of the target ancosdly, the
first initialization must be calculated beforehand.

In order to solve the first problem, the resultstld ICP can be filtered by a Kalman Filter andvjted as the
initialization of the next temporal iteration. Algtion to solve the problem of initialization isgsented in the next
part.

2.3 ICPinitialization

ICP algorithm must be first initialized in attituded position to converge toward the good solufidius, we must
design a specific algorithm able to give a rougtinegtion of the relative state using only geomeitriodel of the
target and measurements provided by the LIDAR.

The following solution can be used to initializestharget attitude for Iterative Closest Point alfpon. This is
inspired from voxel-generation method presentdéjin

First, the inertia matrix of the target is computesin measured points:

(v
{x-x)+ (z zm)z}
( (4)

‘Jxx ‘]yx ‘]zx
=1J, J, I, (5

yz 2z

The sums are done on measured p{rys and| Y, |is the centroid of the image.

Then, the rotation matrix describing the attltucﬂehaz principal geometric axes with respect toitietial frame is
formed by the eigenvector matrix of J.

J=RAR' (6)

With R the rotation matrix equal to the eigenvectatrix of J and\ the diagonal eigenvalue matrix of J.
However, the eigenvectors can be positive or negaind only one solution allows a correct matchiegween
rotated measurements and model points as doneeb\Ct algorithm. Thus, the error between rotateidtpaand
corresponding model points is computed for eacB pbssible solutions, and finally the solution esponding to
the smallest error is retained. The initial positie simply given by the mean coordinates of thasnesd cloud of
points. This solution is only adapted to the caben® the rendezvous sensor has the complete tarietfield-of-
view. Furthermore, only targets with specific stmp®d mass repartition could be adapted to thig@limation
algorithm.
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2.4 Navigation Extended Kalman Filters

Here, the navigation filter is used in order toireate the complete relative state of the targditude, angular
velocity, position and velocity. As the dynamicspasition and attitude are independent, we explesestuations
used separately.

e Attitude equations

The equations presented in this part are usedtitnas the attitude and the angular velocity oftdrget, using the
output of the Iterative Closest Point as measurémen
The states relative to the attitude dynamics are:

X=[wy, w, w, 0, 0, 6,] @)
Statesx, W, andv, are the angular velocities of the targete with regard to the inertial frame expressed i
target frame.

States,, 6,,andf,are the attitude angles corresponding to the iategr of angular velocities.
This representation of the attitude as three anigéssthe advantage of having a physical realityichviallows a
simpler and more efficient tuning.

The evolution of the angular velocities is giventbhg Euler's equations, with null perturbation toeg. This case is
representative of the movement of debris.

I xxd‘x = (I vy - I zz)a‘ya‘z
@, =0, -1 )wo, (8)
I zzwz = (I XX I yy)wxwy

The evolution of the attitude is given by the fellag expression:

Qx = Wy
Qy = Wy )
0, =w,

In order to design the filter, this system is lineed around an equilibrium point.

0 p@, prw, 0 0 0
pyw_z 0 pyw_x 0 0 O
_ da _ — —

A =28k = |P:@y PBx 0 0 0 0 (10

ox 1 0 0 00 0I

l 0 1 0 0 0 0J

0 0 1 00 0
AX = A(X)AX (11)

With:
Px = (Iyy - Izz)/lxx

Dx = (Izz - Ixx)/lyy (12)
Px = (Ixx - Iyy)/lzz

The attitude provided by the ICP algorithm is tltwde of the target expressed in the chaser fraWe apply a
change of coordinates in order to have the attitfdbe target expressed in the inertial frame.
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qtarget—»inertial = {chaser—inertial X qtarget—whaser (13)

We assume that the attitude of the chaser is ghriarown.
In order to use the measurement expressed asergjoat the predicted quaternion is calculated:

Qpred = Qprevious ® &q (14)
With:
(1= @t/2- 0%~ (dt/2+ w,)* ~ (dt/2- 2)2)1/21
8q = dt/2 - wy ‘ (15)
dt/2- w,,
l dt/2 - w, J

dprevious 1S the estimated quaternion at the previous it@naff he innovation is built as the difference betwéhe
predicted and measured quaternions, and is conlviri@ngles representation.
The observation equation is:

0 001 0O
Y = [O 0 0 0 1 0'X (16)
0 0 0 0 01

» Position equations

The relative position between the chaser and tigetaatellites is also given by the Iterative €kidPoint algorithm
and can be filtered by an Extended Kalman filteorider to improve performance of the algorithm.
The translation equations of motion for a spaceceddtive to an elliptical Keplerian reference ibdre:

o x

. . . 2 —
x—ZwOZ—wOZ—wOx+[x2+y2+(h0_z)2]3/2—ux+vx
Uy
+ =u, +
y [x2+y2+(h0—z)2]3/2 Uy Ty
" L u e (hy —2)

2 —
z+2w0x+a)0x—a)0z+h—02—[x2+y2+(h0_z)2]3/2—uz+vz 17)
h.()_ho'w02+L2=0

ho
. 2'h0'wo
+— =

The term X is the in-track position componeit, is plosition along the negative radial direction gnds the

position along the negative orbit normal directich&. and &, are the radius and angular velocity of tHeremce

orbit. K is the gravitational parameter of the plaf@nally, U andv are inputs and noise on the thraaeslation
components. These inputs are used to considerrchassts.

The following states are implemented in the fiteedescribe the relative position dynamics:
S : u
Xtr=[x y z Xy z hy h a)o] (18)
As previously, we need to linearize these equationsrder to design the Extended Kalman filter. Thaeobian

matrix is thus calculated.

AX, = A, (X, )X, (19)
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As for the attitude part, we must apply a changeoairdinates to the position provided by the IGfbathm in order
to have it in LVLH frame. The chaser’s absoluteigation is assumed perfect, so we know withoutrethre attitude
between chaser and LVLH frames.

TwviH = Ychaser—LVLH X Tchaser (20)

Thus, the observation equation is:

1 0
y :{ 33 3<6:| X, (21)
Osc Ogs

3. Simulation results

A simulator was developed to simulate close rendegwith a space debris. This simulator is codelllatlab and
allows the simulation of the satellites trajectsrighe sensor measurements and navigation soluftos.results
presented in this section are obtained with a tamgeresentative of H10 upper-stage and LIDAR measants.
Several trajectories are considered to obtain iposénd attitude precision.

3.1 Simulation conditions

The target considered is a H10 upper-stage. Ipjsaximately 10m higher and is nearly symmetricuaib z-axis.
Thus, it is particularly challenging to estimate ttoll angle. The geometric model is formed of appmately 100
points and is shown in the next figure.
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Figure 4: H10 geometric model

The H10 target is in flat-spin with an angular iy equal to 0,3 deg/s. It means that it rotatesiad a transverse
angle and is stabilized in the inertial frame. Tomsidered orbit is circular and located at artualé of 1000 km.
Measurements are generated and used at a frequédckiz, while the navigation filters run at a fusapcy of 10
Hz. A noise on chaser’s absolute navigation is dddebe coherent with the use of navigation sensach as GPS,
startracker, gyrometers and accelerometers.

Several simulations are run using the completegadizin solution.

e  Station-keeping at 50m

e  Station-keeping at 25m

e Approach from 100m to 50m

e Fly-around from 50m to 25m
The fly-around maneuver consists in applying arekeation boost when being at 50m, making the ah@aseing
around the target with a relative distance betviEm and 25m.
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3.2 LIDAR measurements gener ation

/

Figure 5: LIDAR principle

Once the lines of sight are known, we calculatér iiersection with the planes of the target. Kree of sight has
more than one intersection, we only keep the iet#isn with the closest plane. By doing this ogerafor each line
of sight, we can keep only target points in frohthe sensor for attitude estimation.

* Image Resolution

This parameter will define the horizontal vertiaasolution of the output images. For a LIDAR sintiala,
resolution should be taken quite low to be realisti is a trade off because high resolutions megai lot of
calculation time in the reconstruction algorithrm the following simulations, resolution is equal ©46°.
Considering a 40° field-of-view, it gives a scamatation of roughly 90x90 (~8000 scans).

 LIDAR noise

To enhance realism of LIDAR measurements, an asramtroduced. For each component, a Gaussian natbe
specific variance and bias is added. The rangeneei and bias are linearly dependant of the distartwveen the
chaser and the target. Here are the LIDAR parasetarsidered for the study:

Table 1: LIDAR model parameters

Horizontal Field of View 40° Max Azimuth noised)l 0.4°
Vertical Field of View 40° Max Azimuth bias 0.03°
Minimum range 0.7m Range noise at minimur)(1 0.1m
Maximum range 2000 m Range noise at maximus) (1 0.38 m
Elevation noise (@) 0.4° Range bias at minimum 0.05m
Elevation bias 0.03° Range bias at maximum 0.7m

Azimuth and elevation bias and variance are theesahmtever the distance is. A bias of 0.03° andigenwith a
standard-deviation of 0.4° is added on every pdihe error on range (bias and variance) is funatitthe distance.
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We also add a spatial frequency bias, which comedp to a noise function of the laser directiorr. &ample, the
elevation frequency bias is the highest when tlmuath is equal to zero.

3.3 Results

The attitude and position errors are given in thaser frame and are shown on the following figuidse attitude
error is given in terms of Euler anglegsis the first rotation around y-axis, thénrepresents the rotation around z-
axis and finally¥ is the last rotation around x-axis.

Table 2: Navigation filter tuning

Navigation filter parameter | value (16)

Attitude part

Initial covariance matrix 0.1°/s on angular velgcR° on attitude
Model noise 0.01 °/s on angular velocity, 0.1° tituae
Measurement noise 5° on attitude

Position part

Initial covariance matrix 0959

Model noise 0.03 m on position; 0.01 m/s on speed
Measurement noise 0.5m

The initialization solution gives the following ndts for unitary simulations:

Table 3: Initialization solution results

Studied case Initial position error /XY Z-axis Initial attitudeerror ¢, 0, ¥
Station-Keeping at 50m -0.59m /0.33m/-0.12m 0/30.14° / -0.22°
Station-Keeping at 25m -0.66m/0.11m/-0.01m 50/7-2.05° / -0.38°
Approach from 100m to 50m -0.45m /0.12m/ -0.08m .040/-5.36° / -3.15°
Fly-around from 50m to 25m -0.54m/0.41m/-0.08m 1.29°/1.22°/-0.16°

We observe a different result between the Statiergihg at 50m and the fly-around, which is alstidhized at
50m. This difference probably comes from the mezpent noise on the cloud of points, which is net$ame in
both cases. However, the attitude error stays b&lé#on the three Euler angles.

10
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Figure 6: Estimation errors — Attitude, angularooily and position for Station-Keeping at 50m
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Figure 9: Estimation errors — Attitude, angularoa#ly and position for fly-around between 50m asan2
The particular shape of the target makes the estimaf the roll angle very difficult. Results shdfat the error can

be very high on this angle. Thus, only error omskeerse angles and associated angular velocigeprasented on
the previous figures.
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The simulations show that the navigation solutiloves good convergence of the transverse anglespasidion.
The initialization provided by the specific implemed solution is good enough to converge towardduoect
attitude.

The error on the transverse angles is inferior.& @fter convergence when the chaser is in stdi@ping 25m
behind the target and inferior to 1° when the distais equal to 50m. The linear approach scendmiovs an
estimation error decrease on attitude, which ieragting for our application, as we need a gootbpeance when
the target becomes closer. We can notice thatiposg estimated with an error up to 30cm, but doetsdecrease
significantly when the distance is low. The fly-anal simulation is run on 6300s, which is the doratof the
maneuver. We see that it does not improve the teefl the navigation in comparison with station{keg
simulations at 50m or 25m. It can be explained hwy flact that the fly-around does not bring morebilisy or
information about the pose of the target in thiseca

Improvements of the navigation filter could leadatdetter roll estimation but we assume that théopmance is
principally wanted on transverse angles which lagenhost important ones if we want to capture the.H1

4, Conclusion and future work

A navigation technique has been presented to estibmath relative position and attitude of a spaebrid. This
solution is formed of a navigation algorithm adalpte cloud of points obtained by LIDAR or stere@ssensors, a
specific algorithm for attitude initialization ameh Extended Kalman Filter.

The navigation algorithm uses a geometric modéheftarget to match the set of measured pointstmiilator has
been developed to obtain first results with H1@e#rconsidering different trajectories and a stigliLIDAR sensor
model. The attitude error stays below 0.5° whendiséance between the two satellites is equal tm,28hile the
position error is below 30cm along the three aXd®se results show the advantage of using a nagélter,

which allows good performance even when there tsatwiays a good target visibility and the levelpafiformance
we can expect when considering cylinder shapedigieBurthermore, the considered initialization nogktrallows
good convergence of the ICP algorithm even whes itsed at 100m. One way to improve the navigamntion

would be to use the initialization method in pakiith the ICP algorithm to ensure that the resuttorrect.

The chaser’s absolute navigation is only used fanges of frames and does not have a significapadtmon the
relative navigation performance.

Future work on the subject will concern resultshwitss of visibility in last few meters and improvents of the
filter’s tuning and capacities to estimate the awlyle correctly. The initialization method coulel improved in order
to be adapted to all kind of targets. Finally, egsh could be done about a navigation method wivimhlid not need
a geometric model of the target as it would reqmesit online from measurements.

13
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