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Abstract

A localized heating or cooling effect on stabildgd transition of the boundary layer flow on a phar
cone is analyzed at the Mach number 6. The meavsflre calculated using axisymmetric Navier-
Stokes equations. The spatial linear stability ysialis performed for 2D disturbances related ® th
Mack second mode. The transition onset points siienated using the“emethod. In this framework,
the heater or cooler may cause earlier or latesitian depending on the choice of critical N-facto
Direct numerical simulations of 2D-wave propagatiimgthe boundary layer are compared with
stability results.

1. Introduction

Laminar-turbulent transition causes significantréase in heat transfer and viscous drag that l¢éadsevere
restrictions on performance of high-speed vehiclés thermal protection systems (TPS) of such Vehimay have
elements of different heat conductivity and/or esivisy. Junctures between these elements lead pguof the
heat-transfer boundary conditions. These thermalurgformities may significantly affect the boungdayer mean
flow, excitation and evolution of unstable modes ,anltimately, the transition locus. Investigatioof physical

mechanisms associated with the foregoing thernfat&sf may help to design new TPS with laminar floowntrol

capabilities.

The wall temperature jump effect was investigatezbtetically [1, 2] and numerically [3] for laminaupersonic
mean flows. Two-dimensional direct numerical sintiolas (DNS) of receptivity and stability of the bulary layer
on a flat plate in the Mach 6 free stream wereiedrout in [4] with emphasis on the case whereetisra wall
temperature jump. Steady-state numerical solutidaved that the positive jump (from cold to hot vaiduces
compression waves and leads to thickening of thend@ary layer, while the negative jump induces exfmanwaves
and leads to thinning of the boundary layer. Thé teaperature jumps were located at differentatises from the
plate leading edge. These jumps affect both stalaihid receptivity of the boundary layer. It waarid that the total
growth of an unstable wave of fixed frequency sgtgrdepends on the sign and locus of the jump.

Localized surface heating or cooling can be comsitlas a technique for laminar flow control. Thisthod was
used to suppress the first mode disturbances (Teih8chlichting waves) [5-6] by local heating iretbubsonic
boundary layer. A heating strip can be also usedtabilization of the Mack first mode at supersospeeds, as it
was shown in [7] for the boundary layer over a filgte in the free-stream Mach number 3.5.

The foregoing studies for subsonic and supersdowesfrevealed the following mechanism [8]. In tleéaxation
region developed downstream of the heating sthnig boundary layer temperature is larger than tHetermperature
so that the boundary layer “sees” a relatively cofall. According to the linear stability theory shieads to
decreasing of the first mode growth rates.

The influence of a non-uniform cooling on the Magcond mode in the boundary layer on flat platessharp
cones was investigated in [9] at the free-streanchViaumber of 6.84. Cooling with a ramp decreasthnwall
temperature was considered. The boundary layertiegsawere used for calculations of the boundayg#anean
flow. However, these equations are not applicabléhe regions where the temperature boundary dondithave
sudden changes.

In the present work, we consider a localized hgadincooling on a sharp cone at zero angle of latiithe free-
stream Mach number 6. The steady-state laminar $lolwtion is calculated using the Navier-Stokesagigus. This
solution provides the mean flow for further preitins of the growth rates and amplifications of ab&t
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disturbances using the linear stability theory (L.Slhe stability data are used to estimate thesitiam onset points
with the help of the®method. LST results are compared with two-dimemsiairect numerical simulations (DNS)
of 2D unstable wave propagating in the boundargray

2. Problem formulation

Viscous axisymmetric unsteady compressible flowes @described by the Navier-Stokes equations. Nuieric
simulations are carried out for a sharp cone dfatP angle. The flow variables are made nondimeraiasing the

free-stream parameters denoted by the subscsifit (u,v):(u*,v*)/U; are longitudinal and vertical velocity
components,p=p’ /(p;Uf) is pressure,0=p [ p, is density, T =T /T, is temperature. The nondimensional

coordinates ardx,y)=(x,y )/L” and time ist=t'U. /L", whereU_ is the free-stream velocity," is the cone

length, x is measured from the cone tip along the cone abaseinafter, asterisks denote dimensional vargabilae
fluid is a perfect gas with the specific heat rafiee 1.4 and Prandtl numbePr= 0.72. Calculations are performed
for the free-stream Mach number 6 and differentri®éys numbers (based on the free-stream paranestershe
cone length)Re, = p U L" /4, , where 1 is free-stream dynamic viscosity. The viscosityperature dependence
is approximated by the Sutherland law with the 8ténd constant 110.4 K. The flow parameters cpoed to the
experimental conditions of the Transit-M wind tuhoé Institute of Theoretical and Applied Mechani@¥AM,
Novosibirsk) for the cone model of length=0.5 m.

Details on the problem formulation and the govegrequations are given in [10]. The computationahdm is a
rectangle with its bottom side corresponding todbtee surface for the regidh< x < 1. The boundary conditions on
the cone surface are the no-slip condition and dbestant wall temperaturd.,__ =292 K. On the outflow

w base
boundary, the unknown dependent variables are molaged using the linear approximation. On theowfland
upper boundaries, the conditions correspond tatigisturbed free stream. The upper boundary isddcabove the
cone-induced shock wave.

To simulate heating/cooling source the wall tempeeais specified as:

AT, AT, .
Tutase * 2h tanh( 7C(X X51))+7 xOd [O. 1 2 -
M- AzTh tanh( 7qx - xs,)) + A;“ X[ PS“;XSZ 0.5 D)
T, s X0[0.1,0.5]

where xg, =0.2524 (xg
(Xg, =203.6 mm) is its downstream boundary. The temperatusgridution is smoothed near the boundaries in

accord with the experimental measurement, ") .

The problem is solved numerically using the implggcond-order finite-volume method described @].[The
two-dimensional (axisymmetric) Navier-Stokes equagiare approximated by a shock-capturing scheateatows
for modeling of flow non-uniformities in the tempéure jump vicinity. The advection terms are apprated by
the third-order WENO scheme to decrease the nualedissipation. Herein the computational grid ha@8499
nodes. The grid is clustered in the direction ndrtoahe cone surface so that the boundary-laygiorecontains
approximately 50% of nodes. The code algorithm aff as its implementations and validations are uhised in
[10].

126.2 mm) is the upstream boundary of the heater/coaed xg, =0.4072

3. Steady-state solution with and without heating/cooling

First, the steady-state solution is calculatedrtvige the mean flow field for the baseline caséhaiit heating or
cooling. The pressure field is shown in figure king) this numerical solution we can determine flmavameters on
the upper boundary-layer edge (denoted by substef)t In the mid station x=0.5, these parameters are

T, =1.225, U, =0.984, M_ =5.33, the unit Reynolds numbdRe, = 11x 16m™.
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Figure 1: The mean-flow pressure field past thesasithout heating or cooling

080

For the case of heating (or cooling) the wall terapge rise (or drop) on the heated (or cooledfaserstrip is
AT, . Five different temperature distributions were ruicelly simulated: Run 1403 — baseline flow withbeating

or cooling, Run 1419 — strong cooling, 1421 — weakling, 1458 — weak heating, 1446 — strong heafligese
Runs correspond to experimental conditions of thAM Transit-M wind tunnel. The free-stream and sod
parameters are given in the table. The correspgndall-temperature distributions, which are caltedbusing (2),
are shown in figure 2. It should be noted that tdmperature differenc{ﬂTh| for the case of strong heating is
approximately the same as in the case of weakrapoli

Name Run | M, Re,, T T) AT
mio K K K
Baseline 1403 6 451 44.24 292 0
Strong cooling 1419 6 4.45 4494 29p -204.6
Weak cooling 1421 6 4.44 44.61 292 -144.2
Weak heating 1458 6 4.57 43.85 292 85)7
Strong heating 1446 6 4.46 44.70 292 151.7
12
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TW
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4 no source
cooling strong
cooling weak
24 heating weak
heating strong
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Figure 2: The wall temperature distributioRs(x) for the cases given in the table

Figure 3 shows the pressure and temperature fielttse range 0f0.22< x < 0.4€ for the strong cooling case.
Because of the wall temperature drop near the egstboundaryx, =0.2524, the boundary-layer temperature and
its thickness decrease downstream. This causeshggpawaves emanating from the drop vicinity. Néae

downstream boundary,, =0.4072, the wall temperature rise produces an oppositectetausing compression
waves.

I4.91E-02



Soudakov V., Fedorov A., Egorov .

The same fields are shown in figure 4 for the Imgastrip. Now the wall temperature rises near thstream
boundary x = x;, and drops near the downstream boundaryX,,. The compression waves are formed near the
first point, while the expansion waves are formedmnthe second point.

|

TE o 3 =]

Figure 3: Pressure (left) and temperature (riget)l§ of the mean flow near the cone surface wighstrong cooling
strip (Run 1419)0.22< x < 0.4€

ll.suE—uz ls.s:Emu

s % 53 5]

Figure 4: Pressure (left) and temperature (right)l$ of the mean flow near the cone surface vhighstrong heating
strip (Run 1446)0.22< x< 0.4€
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Figure 5: The wall pressure distributions for cagigen in the table
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Figure 6: The Mach number distributions along thpar boundary-layer edge for cases given in thie tab
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Figure 7: The boundary-layer displacement thickfiessases given in the table

The wall temperature and pressure distributiongHerall cases are shown in figures 2 and 5, réispéc The
Mach number distributionsvl (x) along the upper boundary-layer edge are showigird 6. The displacement

thickness distributionsd” are shown in figure 7. It is seen that there isnaall upstream influence of the
heating/cooling strip on the mean flow (e.g., fgd). The downstream influence protrudes to appratély 1-2
strip lengths (figures 5-7). In the case of straogling, the minimal displacement thickness is agpnately one
half of the undisturbed".

The velocity and temperature versus the wall noroaldinatey , are shown in figure 8 for the statior=0.30

located near the strip center. For the cold sffggan and blue curves), the velocity profiles amrerfilled than in
the baseline case (black curves). For the hotssfdpange and red curves) the trend is oppositeilé&ivelocity and
temperature profiles are presented in figure 9Herstationx = 0.75 located in the relaxation region (downstream of
the heating/cooling region). As expected they éweecto the baseline profiles. As will be showrihia next section,

the mean-flow altering induced by the cooler/heateyngly affects the growth rates of unstable gave
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Figure 8: Velocity and temperature profilesxat 0.3
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Figure 9: Velocity and temperature profilesxat 0.75

4. Linear stability analysis

The growth rates and downstream amplifications afvectively unstable disturbances are computed thi¢h
help of the in-house linear stability code. Thiglesolves the linear stability equations for coragitde boundary-
layer flow using a 4th-order Runge-Kutta scheme andsram-Schmidt orthonormalization procedure. The
eigenvalues of the discrete spectrum are calculaigd the help of a shooting/Newton-Raphson procedu
Hereafter we focused on the Mack second mode whwsémal growth rates correspond to 2D waves. lroatc
with the local-parallel LST, the disturbance is eegsed in the wave form

q=q(y)exp[i(ax-at)],
where w is real circular frequency andr(w)=a, +ia, is complex eigenvalue. The downstream growth of
instability is characterized by the N-factor

N (X, w) = Jx'a(x, w)dx ,
X

where g = —a, is the spatial growth rate, and the initial pokjt should be determined from the receptivity problem.
In the standard"emethod [11], it is assumed that all unstable waaresequally available allover the body surface
and the initial points lie on the lower neutral fech, x, =X (w). The N factors are computed at various fixed

dimensional frequenciess’. The transition onset poink, is estimated from the equatiomaxN (x, «')=N, ,

where N, is an empirical constant. Note that our stabitifyculations agree well with the results of STABide

[12], where the boundary-layer flow past a shaqegree half-angle cone at zero angle of attackosasidered at
the free-stream Mach number 10.
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Figure 10: Maximal growth rates for cases givethmtable
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First we consider characteristics of the most unlstavaves. Figure 10 shows the distributions of imak
growth rateso,, (X) = max[a(x ,a)j for the cases given in the table. Here the gromaths are scaled using the
w

Blasius lengthy/x'V,/U_’ . The instability is affected by the wall-temperatdifference and the mean-flow pressure

gradient. As shown in figure 5, the cooling indueestrong favorable pressure gradient near theagrmstboundary

of the strip x = X, that causes a sharp dropaf,, . Further downstream the mean-flow pressure resoxed o, .,
increases in the cooling region. Then a sharp pealp,(x) near the downstream boundawry=x,, causes a
positive peak ofo,,, . Downstream from the cooling region, the growtie ria higher than in the baseline case and it
relaxes slowly to the baseline distribution. Thatirey produces an opposite effect on the wall presdistribution
that leads to the positive peak @f _, near the upstream boundamy=x; and the negative peak near the
downstream boundary = x., . Downstream from the heater the growth rate iselothian in the baseline case and it
relaxes slowly to the baseline distribution. Beeatl®e cooling/heating effects on the wall presslis&ibution (Fig.

5) and theo,,,, distribution (Fig. 10) are qualitatively similait, is reasonable to assume that the second-mode
instability is predominantly controlled by the inmhd pressure gradient. The wall-temperature ragos to be less
effective.

Note that jumps of the wall temperature near thaiog/heating boundaries cause local non-unifoesif the
mean flow, where the nonparallel effects seem testbeng. Since the local-parallel stability anadysiear these
boundaries is not valid, the"eresults presented hereafter should be treated #isstecut estimate of the
cooling/heating effect.
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Figure 11: N-factors for the wall heating/coolirases; baseline case — black curves, weak cooliygr; strong
cooling — blue, weak heating — orange, strong hgatired
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Figure 11 shows N-factors at various frequencidger@N(x) are computed from the initial pointg = x (<) .
Upstream from the cooling strip the N-factors aot affected. In the cooling region (upper plot$le tN-factor
envelope is higher than the baseline case. Thededteases sharply and rises again overshootindpakeline
envelope in the downstream relaxation region. I #irong-cooling case, the stabilization effectrntds
downstream boundary of the strip is so strong, tiratgrowth rates drop to high negative valuessorde of lines
N(x) are terminated.

Distributions of N-factors for the weak (Run 14%8)d strong (Run 1446) heating cases are showreitotier
plots. As in the cooling cases, the heating do¢sffiect the second-mode instability in the upstreagion x < xg, .

Although the heating reduces the maximal growtksdor x > X,, the unstable region of low-frequency waves is
broadened. Therefore the N-factor envelope is tfteweakly.

5. Direct numerical ssmulation

Direct numerical simulations are performed for liaseline case (Run 1403), the strong cooling dasa (419)
and the strong heating case (Run 1446). Firsteadgtstate solution, which satisfies the free-strdmundary
conditions on the inflow and upper boundaries, adcuated to provide the mean flow on fine meshe Th
computational grid ha§397x 44¢ nodes. Then, time-harmonic disturbances are irdlbgea local periodic suction-
blowing with the mass flow rate on the cone surface

0,0 _
qw(x,t)=m=£sin(2ﬂﬁj sinat) ,x S X<X, ,t>

P,
where & — forcing amplitude;x, =0.1, x, =0.114 — boundaries of the suction-blowing region. Thecuar

frequency is w=a/L"/UJ =700. The suction-blowing amplitudeg =1x10*, was chosen small enough to
compare numerical results with LST. In the unsteaplem, the temperature disturbances on theawalzero.

The local blowing-suction excites unstable distadss in the boundary layer reaching its maximunr treaend
of computational domain. The pressure disturbaigdd, fwhich is the difference between an instandasefield and
the mean-flow field) is shown in figure 12 for RuA03 (the baseline case). Frr> 0.6, the downstream growing

disturbance is observed in the boundary layer.
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Figure 12: Pressure disturbance field for the hasease

Detailed view of this instability in the regiod.85< x < 0.9t is shown in figure 13 for the baseline case aed th
strong heating/cooling cases. The pressure distadsahave a two-cell structure in vertical direttiwhereas the
temperature disturbances have rope-like structeae the upper boundary-layer edge. These patteentyical for
the Mack second mode [10]. Maximal amplitudes abseoved in the strong-heating case, while the nahim
amplitudes correspond to the strong-cooling case.

Figure 14 shows details of the wall pressure digtions p),(x) in the vicinity of heating/cooling strip. The gtri

boundariesx,, and x,, are marked by the vertical red lines. The ampétotbdulations are, presumably, due to the
Mack first mode of relatively large wavelength. thre upstream regiorx < X, , there is no noticeable difference
between p,(x) for the all three cases. In the strip regirg < x< X, , the disturbance amplitude decreases on the
cold strip, while it increases on the hot striprtRer downstream X> X, ), the disturbance starts to grow with

appreciable rate in the heating case and with wealte in the baseline case. For the cooling dasedisturbance
amplitude decreases weakly. Note that the distwdmm@volve smoothly through the cooling/heatingaegThe
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disturbance field patterns (not shown here) doawottain acoustic waves or other additional distndea, which
could be induced by scattering of the primary wanehe strip boundaries.

Figure 13: Pressure (left column) and temperatugét(column) disturbance field).85< x < 0.9%; upper —
baseline, middle — strong cooling, lower — stroegting
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Figure 14: Wall-pressure disturbances near themgbleating strip0.2< x< 0.5, w=700; black curve — baseline,
blue — strong cooling, red — strong heating



Soudakov V., Fedorov A., Egorov .

0.004
0.003 4 — base

P, —— cooling strong
0.002 — heating strong
il H
0.000 A l‘{l‘i"‘# (l\“’l‘l!‘yjul‘“"” \“ ““ |‘ "" ' ‘ “ |
ki
-0.002 ‘
-0.003
-0.004 T T T T T T T

0.0 0.1 0.2 0.3 0.4 05 X 06 0.7

Figure 15: Wall pressure disturbancess 700; black curve — baseline, blue — strong cooling,+estrong heating

The global distributions ofy, are shown in figure 15. The maximal wall-pressiisturbances are reached in the

case of strong heating, while the minimal — in ¢hse of strong cooling. This trend is oppositehtmsé shown in
figure 11.

6. Comparison of DNSand L ST results

To clarify the aforementioned difference additioh&T computations were performed for the secondemod

wave with the frequency being equal to the suckitmwing frequency of DNS @=700). The LST distributions of
dimensional growth rates”(x) and the amplitude ratio\(x) = exp(N (x,w)) are shown in figure 16, where the

initial point is the neutral pointx, = x,(«w) . Similar to DNS solutions, the heating leads tghler disturbances

(compare black and red lines). However the cootiagses even stronger destabilization that is catetlawith the
DNS solution showing stabilization effect (figurg)1

10

50 2000
no heat ——no heat
20 strong cooling strong cooling
7] strong heatin i
[¢] [¢] 15004 strong heating
30
<< 1000
20
500+
10
0 T T T T T T T T T 0 T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.C
X X

Figure 16: Growth rates and the amplitude ratithefsecond mode at the DNS frequemey 700, LST
computations from the neutral point
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Figure 17: Growth rates and the amplitude ratithefsecond mode at the DNS frequeasy700, LST
computations fromx, = 0.1

Because the DNS solutions were obtained using &Il2Wwing-suction which generates disturbances near t
point x,, =0.1, the second-mode wave is excited at this point proghagates downstream. The cooling/heating
element does not affect the mean flow in the upstreegion where the blowing-suction is located. free-stream
parameters are almost the same for the all theescahese arguments allow us to assume thatitta amplitudes
of unstable wave are the same at #ye= X, in the all three cases. With this assumption wemate the growth

rates and the amplification ratios starting frora goint x, = 0.1 (figure 17). The damping of unstable mode in the

upstream regiorx, < x<x, is relatively weak and it is about the same in¢hsees of no-heat and strong heating

(black and red lines). For the strong cooling débee line), the damping is strong that leads ¢migicant reduction
of the amplification ratio. Figure 18 shows comparnis of LST predictions with the DNS solutions.cgithe LST
analysis does not account for receptivity, theighiamplitudes of LST solutions are arbitrary. histfigure the
amplitude ratio is scaled by a factor providing best fit for the baseline case (black lines). $ame factor is used
for scaling in the two other cases. The agreemetwden DNS and LST solutions is satisfactory actingrfor the
fact that the LST analysis ignores the nonpara&fédcts, which are expected to be strong in thdiing/aooling
region.

0.004
base, DNS
cooling strong, DNS
0.003 | heating strong, DNS
D - - - base, LST
W - - - cooling strong, LST
0.0024 - - - heating strong, LST
0.001 -
0.000 1 T 1 T T T T T T
0.0 0.1 0.2 0.3 0.4 05 X 06 0.7 0.8 0.9 1.0

Figure 18: Amplitudes of wall pressure disturbanaes 700; black curve — baseline, blue — strong coolind,+e
strong heating; computations frory =0.1

This example indicates that the cooling effect eally depends on the initial point from which thestable
waves start to propagate downstream. This pointrim, is determined by the receptivity mechani3im.illustrate
this statement we consider the following situatidvssume that the second-mode waves of all freqasnare

effectively excited near the cone tip and the ré&eigp process is completed by the statiog=0.1. It is also
assumed that in this station the initial amplitudésinstable waves are approximately the samelfdreguencies.

11
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In this case, the N factors and their envelope lshba calculated from the fixed initial poin¢, =0.1. Figure 19

compares these N-factors (red curves) with N-factmmputed from the neutral points (black curves)ttie cases
of no-heating (left panel) and weak cooling (rigtanel). In the baseline case, the damping of ifgtain the

upstream regions;, < x< X, is relatively weak and the N-factor envelopesaose to each other. Incidentally this

explains why the " method is robust for sharp cones with isothermahdiabatic walls. In the cooling case, the
situation is different. The low-frequency waves,iethare dominant downstream from the strip, expegea strong

damping in the regiong, < x< x,, and the N-factor envelope (red curves) is shiftedn significantly atx >0.6.
As shown in figure 20, stability computations &t fixed initial point x, =0.1 predict that the cold strip produces a
stabilization effect forx > 0.6, just opposite to the case gf = x, shown in figure 11.

——no heat, XD=Xn
—no heat, X =0.1

weak cooling, XO=Xn
— weak cooling, X =0.1

77
7
s i
i el
T

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 19: N-factors computed from the neutral po{black lines) and form the fixed poinf = 0.1 (red lines)
for the baseline case (left panel) and the weakrapoase (right panel)

—no heat, x =0.1

weak cooling, xO:O.l

Figure 20: N-factors computed from form the fixemdrp x, = 0.1 for the baseline case (black curves) and the
weak cooling case (cyan curves)

7. Summary

A localized heating or cooling effect on stabilidf the boundary-layer flow on a sharp cone at zergle of
attack is analyzed at the free-stream Mach numbdfivg different temperature distributions were evically
simulated: baseline flow without heating or coolistrong and weak cooling, strong and weak heafiing. free-
stream and surface conditions correspond to thererpnts recently performed in the ITAM Transit-Nha tunnel
(Novosibirsk).
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The mean flows are calculated using axisymmetrivi®taStokes equations. The spatial LST analysis is
performed for 2D disturbances related to the Mamtoad mode. The N-factors computed from the nepiaits
indicate that the cooling strip may cause earti@ngition, while the heating strip produces a wekict.

To account for the nonparallel effects, which anrhanced by the cooling/heating strip, DNS was peréal for
2D disturbance excited by the suction-blowing $tmiated upstream from the strip. It was shown thatsecond
mode instability is a dominant component of theuwttsance field in the boundary layer downstrearmftbe strip. It
was found that the hot strip leads to increasinthefinstability amplitude, while the cold stripopiuces an opposite
effect. The LST computations of the second-mode lifiogiion starting from the suction-blowing locusgree
satisfactory with the DNS solutions. Consequertily honparallel effects are not dramatic for thetalrle waves
passing through the cold or hot region.

The LST computations performed from the differamitial points showed that predictions of the wadbting
effect essentially depends on the choicexgf If the N factors are computed form the neutrahtsy the cold strip

leads to the upstream shift of the N-factor envelapd thereby may cause earlier transition. IfNhfactors are
computed form the fixed point located upstream fiitven strip, the trend is opposite. This indicatest the local
cooling effect essentially depends on the receaptiviechanism (more specifically on the locationmafst receptive
region). This also suggests that the location efciboling/heating strip is a critical factor.

This work was partially supported by TransHyBerif¥bject of the 7 Framework Program and by the Russian
Government under grant ‘Measures to Attract Lea@oggntists to Russian Educational Institutionginftact No.
11.G34.31.0072).
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