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Abstract 
A localized heating or cooling effect on stability and transition of the boundary layer flow on a sharp 
cone is analyzed at the Mach number 6. The mean flows are calculated using axisymmetric Navier-
Stokes equations. The spatial linear stability analysis is performed for 2D disturbances related to the 
Mack second mode. The transition onset points are estimated using the eN method. In this framework, 
the heater or cooler may cause earlier or later transition depending on the choice of critical N-factor. 
Direct numerical simulations of 2D-wave propagating in the boundary layer are compared with 
stability results. 

1. Introduction 

Laminar-turbulent transition causes significant increase in heat transfer and viscous drag that leads to severe 
restrictions on performance of high-speed vehicles. The thermal protection systems (TPS) of such vehicles may have 
elements of different heat conductivity and/or emissivity. Junctures between these elements lead to jumps of the 
heat-transfer boundary conditions. These thermal non-uniformities may significantly affect the boundary-layer mean 
flow, excitation and evolution of unstable modes and, ultimately, the transition locus. Investigations of physical 
mechanisms associated with the foregoing thermal effects may help to design new TPS with laminar flow control 
capabilities. 

The wall temperature jump effect was investigated theoretically [1, 2] and numerically [3] for laminar supersonic 
mean flows. Two-dimensional direct numerical simulations (DNS) of receptivity and stability of the boundary layer 
on a flat plate in the Mach 6 free stream were carried out in [4] with emphasis on the case where there is a wall 
temperature jump. Steady-state numerical solutions showed that the positive jump (from cold to hot wall) induces 
compression waves and leads to thickening of the boundary layer, while the negative jump induces expansion waves 
and leads to thinning of the boundary layer. The wall temperature jumps were located at different distances from the 
plate leading edge. These jumps affect both stability and receptivity of the boundary layer. It was found that the total 
growth of an unstable wave of fixed frequency strongly depends on the sign and locus of the jump. 

Localized surface heating or cooling can be considered as a technique for laminar flow control. This method was 
used to suppress the first mode disturbances (Tollmien-Schlichting waves) [5-6] by local heating in the subsonic 
boundary layer. A heating strip can be also used for stabilization of the Mack first mode at supersonic speeds, as it 
was shown in [7] for the boundary layer over a flat plate in the free-stream Mach number 3.5. 

The foregoing studies for subsonic and supersonic flows revealed the following mechanism [8]. In the relaxation 
region developed downstream of the heating strip, the boundary layer temperature is larger than the wall temperature 
so that the boundary layer “sees” a relatively cold wall. According to the linear stability theory this leads to 
decreasing of the first mode growth rates. 

The influence of a non-uniform cooling on the Mack second mode in the boundary layer on flat plates and sharp 
cones was investigated in [9] at the free-stream Mach number of 6.84. Cooling with a ramp decrease in the wall 
temperature was considered. The boundary layer equations were used for calculations of the boundary-layer mean 
flow. However, these equations are not applicable to the regions where the temperature boundary conditions have 
sudden changes. 

In the present work, we consider a localized heating or cooling on a sharp cone at zero angle of attack at the free-
stream Mach number 6. The steady-state laminar flow solution is calculated using the Navier-Stokes equations. This 
solution provides the mean flow for further predictions of the growth rates and amplifications of unstable 
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disturbances using the linear stability theory (LST). The stability data are used to estimate the transition onset points 
with the help of the eN method. LST results are compared with two-dimensional direct numerical simulations (DNS) 
of 2D unstable wave propagating in the boundary layer. 

2. Problem formulation 

Viscous axisymmetric unsteady compressible flows are described by the Navier-Stokes equations. Numerical 
simulations are carried out for a sharp cone of 7º half angle. The flow variables are made nondimensional using the 

free-stream parameters denoted by the subscript “∞”: ( ) ( )* * *, , /u v u v U∞=  are longitudinal and vertical velocity 

components, ( )* * *2/p p Uρ∞ ∞=  is pressure, * */ρ ρ ρ∞=  is density, * */T T T∞=  is temperature. The nondimensional 

coordinates are * *( , ) ( , ) /x y x y L∗=  and time is * /t t U L∗ ∗
∞= , where *U∞  is the free-stream velocity, L∗  is the cone 

length, x  is measured from the cone tip along the cone axis. Hereinafter, asterisks denote dimensional variables. The 
fluid is a perfect gas with the specific heat ratio 1.4γ =  and Prandtl number Pr 0.72= . Calculations are performed 

for the free-stream Mach number 6 and different Reynolds numbers (based on the free-stream parameters and the 
cone length) * * *Re /L U Lρ µ∗

∞ ∞ ∞= , where µ∗
∞  is free-stream dynamic viscosity. The viscosity-temperature dependence 

is approximated by the Sutherland law with the Sutherland constant 110.4 K. The flow parameters correspond to the 
experimental conditions of the Transit-M wind tunnel of Institute of Theoretical and Applied Mechanics (ITAM, 
Novosibirsk) for the cone model of length 0.5L∗ =  m. 

Details on the problem formulation and the governing equations are given in [10]. The computational domain is a 
rectangle with its bottom side corresponding to the cone surface for the region 0 1x≤ ≤ . The boundary conditions on 

the cone surface are the no-slip condition and the constant wall temperature 292w baseT ∗ =  K. On the outflow 

boundary, the unknown dependent variables are extrapolated using the linear approximation. On the inflow and 
upper boundaries, the conditions correspond to the undisturbed free stream. The upper boundary is located above the 
cone-induced shock wave. 

To simulate heating/cooling source the wall temperature is specified as: 

( )( )

( )( )

1 2
1

1 2
2

tanh 70 , [0.1, ]
2 2 2

tanh 70 , [ ,0.5]
2 2 2
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T T x x
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∆ ∆ + + − + ∈


∆ ∆ +=  − − + ∈

 ∉

,   (1) 

where 1 0.2524Sx =  ( 1 126.2Sx∗ =  mm) is the upstream boundary of the heater/cooler and 2 0.4072Sx =  

( 2 203.6Sx∗ =  mm) is its downstream boundary. The temperature distribution is smoothed near the boundaries in 

accord with the experimental measurements of ( )wT x∗ ∗ . 

The problem is solved numerically using the implicit second-order finite-volume method described in [10]. The 
two-dimensional (axisymmetric) Navier-Stokes equations are approximated by a shock-capturing scheme that allows 
for modeling of flow non-uniformities in the temperature jump vicinity. The advection terms are approximated by 
the third-order WENO scheme to decrease the numerical dissipation. Herein the computational grid has 478×599 
nodes. The grid is clustered in the direction normal to the cone surface so that the boundary-layer region contains 
approximately 50% of nodes. The code algorithm as well as its implementations and validations are discussed in 
[10]. 

3. Steady-state solution with and without heating/cooling 

First, the steady-state solution is calculated to provide the mean flow field for the baseline case without heating or 
cooling. The pressure field is shown in figure 1. Using this numerical solution we can determine flow parameters on 
the upper boundary-layer edge (denoted by subscript “e”). In the mid station 0.5x = , these parameters are 

1.225eT = , 0.984eU = , 5.33eM = , the unit Reynolds number 6
1Re 11 10e ≈ × m-1. 
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Figure 1: The mean-flow pressure field past the cone without heating or cooling 

 
For the case of heating (or cooling) the wall temperature rise (or drop) on the heated (or cooled) surface strip is 

hT∆ . Five different temperature distributions were numerically simulated: Run 1403 – baseline flow without heating 

or cooling, Run 1419 – strong cooling, 1421 – weak cooling, 1458 – weak heating, 1446 – strong heating. These 
Runs correspond to experimental conditions of the ITAM Transit-M wind tunnel. The free-stream and surface 
parameters are given in the table. The corresponding wall-temperature distributions, which are calculated using (2), 
are shown in figure 2. It should be noted that the temperature difference hT∆  for the case of strong heating is 

approximately the same as in the case of weak cooling. 
 

Name Run M ∞  Re L∞  

mio 
T ∗

∞  

K 
wT ∗  

K 
hT ∗∆  

K 
Baseline 1403 6 4.51 44.24 292 0 
Strong cooling 1419 6 4.45 44.94 292 -204.6 
Weak cooling 1421 6 4.44 44.61 292 -146.2 
Weak heating 1458 6 4.57 43.85 292 85.7 
Strong heating 1446 6 4.46 44.70 292 151.7 
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Figure 2: The wall temperature distributions ( )wT x  for the cases given in the table 

 
Figure 3 shows the pressure and temperature fields in the range of 0.22 0.46x≤ ≤  for the strong cooling case. 

Because of the wall temperature drop near the upstream boundary 1 0.2524Sx = , the boundary-layer temperature and 

its thickness decrease downstream. This causes expansion waves emanating from the drop vicinity. Near the 
downstream boundary 2 0.4072Sx = , the wall temperature rise produces an opposite effect causing compression 

waves. 
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The same fields are shown in figure 4 for the heating strip. Now the wall temperature rises near the upstream 
boundary 1Sx x=  and drops near the downstream boundary 2Sx x= . The compression waves are formed near the 

first point, while the expansion waves are formed near the second point. 
 

  
Figure 3: Pressure (left) and temperature (right) fields of the mean flow near the cone surface with the strong cooling 

strip (Run 1419), 0.22 0.46x≤ ≤  

  
Figure 4: Pressure (left) and temperature (right) fields of the mean flow near the cone surface with the strong heating 

strip (Run 1446), 0.22 0.46x≤ ≤  
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Figure 5: The wall pressure distributions for cases given in the table 
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Figure 6: The Mach number distributions along the upper boundary-layer edge for cases given in the table 
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Figure 7: The boundary-layer displacement thickness for cases given in the table 

 
The wall temperature and pressure distributions for the all cases are shown in figures 2 and 5, respectively. The 

Mach number distributions ( )eM x  along the upper boundary-layer edge are shown in figure 6. The displacement 

thickness distributions δ ∗  are shown in figure 7. It is seen that there is a small upstream influence of the 
heating/cooling strip on the mean flow (e.g., figure 5). The downstream influence protrudes to approximately 1-2 
strip lengths (figures 5-7). In the case of strong cooling, the minimal displacement thickness is approximately one 
half of the undisturbed δ ∗ . 

The velocity and temperature versus the wall normal coordinate y , are shown in figure 8 for the station 0.30x =  

located near the strip center. For the cold strips (cyan and blue curves), the velocity profiles are more filled than in 
the baseline case (black curves). For the hot strips (orange and red curves) the trend is opposite. Similar velocity and 
temperature profiles are presented in figure 9 for the station 0.75x =  located in the relaxation region (downstream of 
the heating/cooling region). As expected they are close to the baseline profiles. As will be shown in the next section, 
the mean-flow altering induced by the cooler/heater strongly affects the growth rates of unstable waves. 
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Figure 8: Velocity and temperature profiles at 0.3x =  
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Figure 9: Velocity and temperature profiles at 0.75x =  

4. Linear stability analysis 

The growth rates and downstream amplifications of convectively unstable disturbances are computed with the 
help of the in-house linear stability code. This code solves the linear stability equations for compressible boundary-
layer flow using a 4th-order Runge-Kutta scheme and a Gram-Schmidt orthonormalization procedure. The 
eigenvalues of the discrete spectrum are calculated with the help of a shooting/Newton-Raphson procedure. 
Hereafter we focused on the Mack second mode whose maximal growth rates correspond to 2D waves. In accord 
with the local-parallel LST, the disturbance is expressed in the wave form 

( )ˆ( )expq q y i x tα ω= −   , 

where ω  is real circular frequency and ( ) r iiα ω α α= +  is complex eigenvalue. The downstream growth of 

instability is characterized by the N-factor 

0

( , ) ( , )
x

x

N x x dxω σ ω= ∫ , 

where iσ α= −  is the spatial growth rate, and the initial point 0x  should be determined from the receptivity problem. 

In the standard eN method [11], it is assumed that all unstable waves are equally available allover the body surface 
and the initial points lie on the lower neutral branch, 0 ( )nx x ω= . The N factors are computed at various fixed 

dimensional frequencies ω∗ . The transition onset point trx  is estimated from the equation max ( , )tr trN x N
ω

ω
∗

∗ = , 

where trN  is an empirical constant. Note that our stability calculations agree well with the results of STABL code 

[12], where the boundary-layer flow past a sharp 7-degree half-angle cone at zero angle of attack was considered at 
the free-stream Mach number 10. 
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Figure 10: Maximal growth rates for cases given in the table 
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First we consider characteristics of the most unstable waves. Figure 10 shows the distributions of maximal 

growth rates [ ]max( ) max ( , )x x
ω

σ σ ω=  for the cases given in the table. Here the growth rates are scaled using the 

Blasius length /e ex Uν∗ ∗ ∗ . The instability is affected by the wall-temperature difference and the mean-flow pressure 

gradient. As shown in figure 5, the cooling induces a strong favorable pressure gradient near the upstream boundary 
of the strip 1Sx x=  that causes a sharp drop of maxσ . Further downstream the mean-flow pressure recovers and maxσ  

increases in the cooling region. Then a sharp peak of ( )wp x  near the downstream boundary 2Sx x=  causes a 

positive peak of maxσ . Downstream from the cooling region, the growth rate is higher than in the baseline case and it 

relaxes slowly to the baseline distribution. The heating produces an opposite effect on the wall pressure distribution 
that leads to the positive peak of maxσ  near the upstream boundary 1Sx x=  and the negative peak near the 

downstream boundary 2Sx x= . Downstream from the heater the growth rate is lower than in the baseline case and it 

relaxes slowly to the baseline distribution. Because the cooling/heating effects on the wall pressure distribution (Fig. 
5) and the maxσ  distribution (Fig. 10) are qualitatively similar, it is reasonable to assume that the second-mode 

instability is predominantly controlled by the induced pressure gradient. The wall-temperature ratio seems to be less 
effective. 

Note that jumps of the wall temperature near the cooling/heating boundaries cause local non-uniformities of the 
mean flow, where the nonparallel effects seem to be strong. Since the local-parallel stability analysis near these 
boundaries is not valid, the eN results presented hereafter should be treated as a first-cut estimate of the 
cooling/heating effect. 
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Figure 11: N-factors for the wall heating/cooling cases; baseline case – black curves, weak cooling – cyan, strong 
cooling – blue, weak heating – orange, strong heating – red 
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Figure 11 shows N-factors at various frequencies, where ( )N x  are computed from the initial points 0 ( )nx x ω∗= . 

Upstream from the cooling strip the N-factors are not affected. In the cooling region (upper plots), the N-factor 
envelope is higher than the baseline case. Then, it decreases sharply and rises again overshooting the baseline 
envelope in the downstream relaxation region. In the strong-cooling case, the stabilization effect near the 
downstream boundary of the strip is so strong, that the growth rates drop to high negative values and some of lines 

( )N x  are terminated. 

Distributions of N-factors for the weak (Run 1458) and strong (Run 1446) heating cases are shown in the lower 
plots. As in the cooling cases, the heating does not affect the second-mode instability in the upstream region 1Sx x< . 

Although the heating reduces the maximal growth rates for 2Sx x> , the unstable region of low-frequency waves is 

broadened. Therefore the N-factor envelope is affected weakly. 
 

5. Direct numerical simulation 

Direct numerical simulations are performed for the baseline case (Run 1403), the strong cooling case (Run 1419) 
and the strong heating case (Run 1446). First, a steady-state solution, which satisfies the free-stream boundary 
conditions on the inflow and upper boundaries, is calculated to provide the mean flow on fine mesh. The 
computational grid has 6397 449×  nodes. Then, time-harmonic disturbances are induced by a local periodic suction-
blowing with the mass flow rate on the cone surface 

( ) ( )1
1 2

2 1

, sin 2 sin , , 0w w
w

v x x
q x t t x x x t

U x x

ρ ε π ω
ρ

∗ ∗

∗ ∗
∞ ∞

 −= = ≤ ≤ > − 
, 

where ε  – forcing amplitude; 1 0.1x = , 2 0.114x =  – boundaries of the suction-blowing region. The circular 

frequency is / 700L Uω ω∗ ∗ ∗
∞= = . The suction-blowing amplitude, 41 10ε −= × , was chosen small enough to 

compare numerical results with LST. In the unsteady problem, the temperature disturbances on the wall are zero. 
The local blowing-suction excites unstable disturbances in the boundary layer reaching its maximum near the end 

of computational domain. The pressure disturbance field, which is the difference between an instantaneous field and 
the mean-flow field) is shown in figure 12 for Run 1403 (the baseline case). For 0.6x > , the downstream growing 
disturbance is observed in the boundary layer. 

 
Figure 12: Pressure disturbance field for the baseline case 

 
Detailed view of this instability in the region 0.85 0.95x≤ ≤  is shown in figure 13 for the baseline case and the 

strong heating/cooling cases. The pressure disturbances have a two-cell structure in vertical direction, whereas the 
temperature disturbances have rope-like structure near the upper boundary-layer edge. These patterns are typical for 
the Mack second mode [10]. Maximal amplitudes are observed in the strong-heating case, while the minimal 
amplitudes correspond to the strong-cooling case. 

Figure 14 shows details of the wall pressure distributions ( )wp x′  in the vicinity of heating/cooling strip. The strip 

boundaries 1Sx  and 2Sx  are marked by the vertical red lines. The amplitude modulations are, presumably, due to the 

Mack first mode of relatively large wavelength. In the upstream region 1Sx x< , there is no noticeable difference 

between ( )wp x′  for the all three cases. In the strip region 1 2S Sx x x< < , the disturbance amplitude decreases on the 

cold strip, while it increases on the hot strip. Further downstream ( 2Sx x> ), the disturbance starts to grow with 

appreciable rate in the heating case and with weaker rate in the baseline case. For the cooling case, the disturbance 
amplitude decreases weakly. Note that the disturbances evolve smoothly through the cooling/heating region. The 
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disturbance field patterns (not shown here) do not contain acoustic waves or other additional disturbances, which 
could be induced by scattering of the primary wave on the strip boundaries. 

 

  

  

  

Figure 13: Pressure (left column) and temperature (right column) disturbance field, 0.85 0.95x≤ ≤ ; upper – 
baseline, middle – strong cooling, lower – strong heating 
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Figure 14: Wall-pressure disturbances near the cooling/heating strip, 0.2 0.5x≤ ≤ , 700ω = ; black curve – baseline, 

blue – strong cooling, red – strong heating 



Soudakov V., Fedorov A., Egorov I. 
     

 10 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.004

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

 base
 cooling strong
 heating strong

p'
w

x
 

Figure 15: Wall pressure disturbances, 700ω = ; black curve – baseline, blue – strong cooling, red – strong heating 

 
The global distributions of wp′  are shown in figure 15. The maximal wall-pressure disturbances are reached in the 

case of strong heating, while the minimal – in the case of strong cooling. This trend is opposite to those shown in 
figure 11. 

6. Comparison of DNS and LST results 

To clarify the aforementioned difference additional LST computations were performed for the second-mode 
wave with the frequency being equal to the suction-blowing frequency of DNS ( 700ω = ). The LST distributions of 

dimensional growth rates ( )xσ ∗  and the amplitude ratio ( ) exp( ( , ))A x N x ω=  are shown in figure 16, where the 

initial point is the neutral point, 0 ( )nx x ω= . Similar to DNS solutions, the heating leads to higher disturbances 

(compare black and red lines). However the cooling causes even stronger destabilization that is contrasted with the 
DNS solution showing stabilization effect (figure 15). 
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Figure 16: Growth rates and the amplitude ratio of the second mode at the DNS frequency 700ω = , LST 

computations from the neutral point 
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Figure 17: Growth rates and the amplitude ratio of the second mode at the DNS frequency700ω = , LST 

computations from 0 0.1x =  

 

Because the DNS solutions were obtained using a 2D blowing-suction which generates disturbances near the 
point 1 0.1Sx = , the second-mode wave is excited at this point and propagates downstream. The cooling/heating 

element does not affect the mean flow in the upstream region where the blowing-suction is located. The free-stream 
parameters are almost the same for the all three cases. These arguments allow us to assume that the initial amplitudes 
of unstable wave are the same at the 0 1Sx x=  in the all three cases. With this assumption we compute the growth 

rates and the amplification ratios starting from the point 0 0.1x =  (figure 17). The damping of unstable mode in the 

upstream region 0 nx x x< <  is relatively weak and it is about the same in the cases of no-heat and strong heating 

(black and red lines). For the strong cooling case (blue line), the damping is strong that leads to significant reduction 
of the amplification ratio. Figure 18 shows comparisons of LST predictions with the DNS solutions. Since the LST 
analysis does not account for receptivity, the initial amplitudes of LST solutions are arbitrary. In this figure the 
amplitude ratio is scaled by a factor providing the best fit for the baseline case (black lines). The same factor is used 
for scaling in the two other cases. The agreement between DNS and LST solutions is satisfactory accounting for the 
fact that the LST analysis ignores the nonparallel effects, which are expected to be strong in the heating/cooling 
region. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.000

0.001

0.002

0.003

0.004

 base, DNS
 cooling strong, DNS
 heating strong, DNS
 base, LST
 cooling strong, LST
 heating strong, LST

p'
w

x
 

Figure 18: Amplitudes of wall pressure disturbances, 700ω = ; black curve – baseline, blue – strong cooling, red – 

strong heating; computations from 0 0.1x =  

This example indicates that the cooling effect essentially depends on the initial point from which the unstable 
waves start to propagate downstream. This point, in turn, is determined by the receptivity mechanism. To illustrate 
this statement we consider the following situation. Assume that the second-mode waves of all frequencies are 
effectively excited near the cone tip and the receptivity process is completed by the station 0 0.1x = . It is also 

assumed that in this station the initial amplitudes of unstable waves are approximately the same for all frequencies. 



Soudakov V., Fedorov A., Egorov I. 
     

 12 

In this case, the N factors and their envelope should be calculated from the fixed initial point 0 0.1x = . Figure 19 

compares these N-factors (red curves) with N-factors computed from the neutral points (black curves) for the cases 
of no-heating (left panel) and weak cooling (right panel). In the baseline case, the damping of instability in the 
upstream regions 0 nx x x< <  is relatively weak and the N-factor envelopes are close to each other. Incidentally this 

explains why the eN method is robust for sharp cones with isothermal or adiabatic walls. In the cooling case, the 
situation is different. The low-frequency waves, which are dominant downstream from the strip, experience a strong 
damping in the regions 0 nx x x< < , and the N-factor envelope (red curves) is shifted down significantly at 0.6x > . 

As shown in figure 20, stability computations at the fixed initial point 0 0.1x =  predict that the cold strip produces a 

stabilization effect for 0.6x > , just opposite to the case of 0 nx x=  shown in figure 11. 
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Figure 19: N-factors computed from the neutral points (black lines) and form the fixed point 0 0.1x =  (red lines) 

for the baseline case (left panel) and the weak cooling case (right panel) 
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Figure 20: N-factors computed from form the fixed point 0 0.1x =  for the baseline case (black curves) and the 

weak cooling case (cyan curves) 

7. Summary 

A localized heating or cooling effect on stability of the boundary-layer flow on a sharp cone at zero angle of 
attack is analyzed at the free-stream Mach number 6. Five different temperature distributions were numerically 
simulated: baseline flow without heating or cooling, strong and weak cooling, strong and weak heating. The free-
stream and surface conditions correspond to the experiments recently performed in the ITAM Transit-M wind tunnel 
(Novosibirsk). 
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The mean flows are calculated using axisymmetric Navier-Stokes equations. The spatial LST analysis is 
performed for 2D disturbances related to the Mack second mode. The N-factors computed from the neutral points 
indicate that the cooling strip may cause earlier transition, while the heating strip produces a weak effect. 

To account for the nonparallel effects, which are enhanced by the cooling/heating strip, DNS was performed for 
2D disturbance excited by the suction-blowing slot located upstream from the strip. It was shown that the second 
mode instability is a dominant component of the disturbance field in the boundary layer downstream from the strip. It 
was found that the hot strip leads to increasing of the instability amplitude, while the cold strip produces an opposite 
effect. The LST computations of the second-mode amplification starting from the suction-blowing locus agree 
satisfactory with the DNS solutions. Consequently the nonparallel effects are not dramatic for the unstable waves 
passing through the cold or hot region. 

The LST computations performed from the different initial points showed that predictions of the wall cooling 
effect essentially depends on the choice of 0x . If the N factors are computed form the neutral points, the cold strip 

leads to the upstream shift of the N-factor envelope and thereby may cause earlier transition. If the N factors are 
computed form the fixed point located upstream from the strip, the trend is opposite. This indicates that the local 
cooling effect essentially depends on the receptivity mechanism (more specifically on the location of most receptive 
region). This also suggests that the location of the cooling/heating strip is a critical factor. 

This work was partially supported by TransHyBeriAN Project of the 7th Framework Program and by the Russian 
Government under grant ‘Measures to Attract Leading Scientists to Russian Educational Institutions’ (contract No. 
11.G34.31.0072). 
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