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Abstract 
In this paper, we theoretically and analytically predict what times regression rates of swirl injection 

hybrid rocket engines increase higher than axial injection ones by estimating heat flux from boundary 

layer combustion to the fuel port. We assume the schematic of engines as ones whose oxidizer is 

injected from the opposite side of the nozzle such as ones of Yuasa et al. propose. To simplify the 

estimation, we assume some hypothesis such as three dimensional axisymmetric flows. The results of 

this prediction method are largely consistent with Yuasa’s experiments data in the range of high swirl 

numbers. 

Nomenclature 

 
𝑎 :  constant related to regression rate 

  :  blowing parameter    
(   )    

   
,   
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   :  thermodynamic chemical blowing 

parameter    
   ⊿ℎ

   ℎ𝜈
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𝐶 :  specific heat of solid fuels 

𝐶𝑓 :  skin-friction coefficient in axial flow 

𝐶𝑓 
 : 

 rzw

1/2    

 

𝐶𝑓 
 : 

 r w
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𝐶𝐻 :  Stanton number 

𝐶𝑝 :  specific heat at constant pressure 

𝐷 :  port diameter 

𝐺𝑜 :  oxidizer mass flux 

⊿ℎ :  enthalpy difference between flame sheet 

and port surface 

ℎ𝜈 :  total enthalpy of solid fuel gasification 

from ambient temperature 

𝑘 :  blocking exponent in axial flows 

𝑘′ :  blocking exponent in swirl flows 

𝑙 :  mixing length tensor 

𝐿 :  port length 

𝑛 :  mass flux exponent for hybrids 

𝑃 : pressure 

𝑝 :  exponent related to swirl decay in cold 

flows 𝑝 = −0.569 × 𝑅𝑒𝐷
−0.277𝐷−1 

𝑞 :  constant used for approximation of the 

function of blowing parameter in axial 

flows 

𝑞′ :  constant used for approximation of the 

function of blowing parameter in swirl 

flows 

𝑞𝑟 :  radial direction heat flux 

𝑄�̇� :  heat flux to the wall 

𝑟 :  radial location 

�̇� :  regression rate 

𝑆 :  swirl number 

𝑡 :  time 

𝑇 :  temperature 

  :  velocity 

  :  axial location 

𝛼  :  constant related to approximation of 𝐶𝑓 
 

𝛽  :  constant related to approximation of 𝐶𝑓z
 

𝛾  :  exponent related to approximation of 𝐶𝑓z
 

𝛿 :  boundary layer thickness 

𝜀 :  perturbation scale 

𝜂 :  nondimensional height in boundary layer 

𝜃 :  angle 

к :  constant related to mixing length 

  :  average gas viscosity 

  :  average gas kinematic viscosity 

ξ :  swirl strength 
ξ

2
≈ S 

𝜌 :  density 
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𝜏 :  shear stress 

𝜑 :  nondimensional velocity in boundary 

layer 

𝜔 :  angular velocity 

�̅� : nondimensional angular velocity  

�̅� =
𝑅 − 𝛿 

  𝑒

𝜔 

Subscripts 

  :  flame area 

   :  boundary layer 

  :  free stream or main flow 

  :  fuel 

  :  oxidizer 

  :  radial direction 

    :  reference point 

  :  wall 

  :  axial direction 

  :  angular direction 

ξ :  in cases with swirl 
̅  :  nondimensionalized 

̇  :  time differential 

 

1. Introduction 

Hybrid propulsion is expected to be applied for various purposes like space transportation, space tourism and 

space education because of its inherent safety and low cost. In conventional hybrid rocket engines, liquid oxidizer is 

injected into a combustion chamber that contains solid fuel, such as HTPB (which is a binder for solid rocket motors). 

Gasified oxidizer and fuel combust in the boundary layer over the fuel-port wall surface. Hybrid rockets using HTPB 

have been developed for many years, of which performance dead-ends because the regression rate using HTPB is 

low (up to 1 mm s
-1

 below the oxygen mass flux of 100 kg m
-2

 s
-1

 ) [1]. That is why multi-port systems are required 

in the practical use of hybrid engines used HTPB. However, these systems decrease launch capability from potential 

one because of remnants of the fuel in multi-port engines and have an anxiety of the drop of them around the end 

times of combustion. 

To solve this problem, swirl injection (or vortex injection) method is proposed as a way to realize higher 

regression rates without energetic additives or the change of fuels [2] [3]. This method is to inject liquid oxidizer that 

has swirl velocity components. The characteristics of this injection method is that the radial pressure gradient caused 

by swirl makes the flame area in the boundary layer more close to the wall of the fuel port. This effect increases the 

amount of heat transfer from the flame area to the wall, and then, higher regression rates can be achieved. Lab-scale 

swirl injection hybrid rocket motors have been developed and proved that the increase of regression rates by several 

researchers (e.g. Yuasa [2] and Knuth [3]). However, there have been few studies which theoretically and 

quantitatively predict the increase of regression rates by swirl, though they will be useful for designing whatever 

scale of engines, for the comprehension about the phenomena in engines, and as another way to estimate the effects 

of swirl strength to the regression rate and other properties. Furthermore, theoretical and analytical studies have a 

flexibility which means that studies are not restricted by practical limitation such that a variable is originally 

independent on other ones, but in actual experiments, one depends on others because of the experimental equipment. 

For this reason, theoretical approach can reveal hidden property of a phenomenon which experimental approach 

cannot. Moreover, Current CFD approaches cannot always accurately simulate actual swirl flows and the techniques 

about swirl flows on CFD is on the way of development [4]. That is why it is significant to construct the theoretical 

analytical approach for the prediction of regression rates in swirl injection hybrid rockets. 

The purpose of this paper is to extend the estimation method of regression rates for axial hybrid rocket engines to 

for swirl injection ones. To predict regression rates, we should estimate heat flux to the fuel port with some already 

known quantities which represent flow field and other parameters about the combustion chamber because we obtain 

the following equation at quasi-steady states: 

 

 𝑄�̇� = 𝜌 �̇�ℎ𝜈 (1) 

 

Because 𝜌  and ℎ𝜈 are almost decided by fuel species and ambient temperature (ℎ𝜈 includes the amount of specific 

heat to gasify the fuel of the ambient temperature), if you have another expression of 𝑄𝑐, you can estimate regression 

rates. In 1960s, Marxman [5] [6], and Gilbert [5] conducted theoretical and analytical studies about boundary layer 

combustion and evaluated heat transfer to the wall of fuels in axial hybrid motors. Their approach starts from the 

linkage between the heat transfer and the skin-friction by Lees [7]. This equation means that if the skin-friction with 

the fuel blowing from the wall can be estimated, it is possible to estimate the heat flux to the wall. Their approach to 

evaluate the shear stress at the wall with fuel blowing was to express it with the simple one without fuel blowing 

which can be express by an empirical formula. 

In our study, first, we add some hypotheses which are needed to simplify the problem and to evaluate the effects of 

circumferential flows, we extend the flow field to three dimensional axisymmetric flows. However, the concept of 
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the approach to evaluate the heat flux of swirl injection hybrids is the same as the one past researchers took in the 

aspect of the introduction of Reynolds analogy and the connection with the shear stress at the wall. When we 

consider Reynolds analogy, we can understand that the temperature field is not similar to the scholar of the velocity 

vector but to the axial component of the velocity vector. And then, we attempt to evaluate the axial component of the 

shear stress at the wall in swirl flows with fuel blowing with the one without fuel blowing. On the way of the 

evaluation, we use flow field in boundary layer with swirl and no fuel blowing to evaluate the effects of swirl and 

blowing individually. Eventually, we derive the theoretical estimation of regression rates in swirl injection hybrids 

and compare the predicted values with experimental results of Yuasa et al. [2]. 

2. Modeling and hypotheses of flows in swirl injection hybrid rocket engines  

   First of all, we consider 10 hypotheses mainly related to the flow fields. These can largely be classified into two 

types. One type is the same assumptions as the theory of Marxman et al. to simplify the complex flow in chambers. 

Another type is newly added to handle swirl flows easily and observed in experiments related to swirl flows. The 

hypotheses we assumed in this paper is summarized in Table 1. These hypotheses are set for the engines whose 

schematics are the same type as ones Yuasa et al. proposed (Fig. 1). 

Of the hypotheses of Table 1, No.1 is set to simplify flow fields. No.2, 3, 4, and 6 are the same assumptions as the 

theory of Marxman et al. No. 2 makes it possible to apply Reynolds analogy. No. 3 is not clearly declared but we 

think this hypothesis is used in their theory because Karman’s momentum integral equation is used in their derivation 

of the friction coefficient with fuel blowing. No.4 and 5 are assumed to simplify calculating swirl numbers and 

because in the experimental results of Steenbergen [8] and Kito et al. [9] the flow fields similar to these hypotheses 

are observed around the downstream where the effects of the swirlers used are much small. The reason for applying 

the power law to the angular velocity with No.7 is that the definition of shear stress of the radial direction parallel to 

the circumferential direction is expressed as  𝑟
  

 𝑟
. Hypothesis No.9 is assumed because of the experimental results 

of Steenbergen [8] and Kito et al. [9] and for simplification of the problem. In all their results, the axial component of 

the boundary layer thickness is larger than the circumferential one around the downstream where the effects of the 

swirlers used in these experiments are much small. No. 10 is set to simplify the flow field and some researchers such 

as Karabeyoglu et al. [10] adopted this assumption for this reason. However, we think this assumption is not always 

suitable if metal or carbon powders are added to increase radiation or absorption of it during combustion. 

 

Figure 1: The schematics of swirl injection hybrid rocket engines we consider in this paper. 

 

Table 1: The hypotheses on swirl flows 

1. The flow in the combustion chamber is axisymmetric. 

2. The Prandtl number in the flow is 1. 

3. The flow in the boundary layer is incompressible. 

4. Axial velocity components are uniform to the axial and radial directions except in the 

boundary layer over the fuel-port wall surface. 

5. Circumferential velocity distribution is the same as rigid body rotation to the radial 

direction except in the boundary layer over the fuel-port wall surface. 
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6. Axial velocity components in the boundary layer obey the power law when there is not 

blowing from the solid fuel. 

7. Circumferential angular velocity components in the boundary layer obey the power law 

when there is no blowing from the solid fuel. 

8. The swirl without fuel blowing from the solid fuel decays exponentially to the axial 

direction. 

9. The axial boundary layer thickness is larger than the circumferential one. 

10. The heat flux to the fuel port by heat convection is much larger than the one by 
radiation. 

3. The Derivation of regression rates in swirl injection hybrid rocket engines 

 In this section, we aim to derive the equation to estimate regression rates in swirl injection hybrid rocket motors 

theoretically on the basis of the hypotheses in the last section. Because regression rates are linked with the heat flux 

to the wall through the energy conservation Eq. (1), in order to derive regression rates with the variables of swirl 

flows, we should express the heat flux to the wall in the aspect of fluid dynamics and combustion. Therefore, first, in 

the same way as Marxman et al., we attempt to relate the axial velocity field with the temperature field through 

Reynolds analogy which is extended from Lees’s model in two dimensional coordinates to the model in 

axisymmetric three dimensional coordinates. Because each radial partial differential of them is proportional to the 

axial components of shear stress and heat flux respectively, we can express heat flux with variables about the flow in 

the combustion chamber. (Fig. 2) Next, we attempt to express the axial shear stress with the scale of motors, axial 

position, thermochemical and mechanical parameters of propellants, and the boundary conditions related to flows in 

the engines such as the swirl strength at the injectors, the axial velocity and Reynolds number in the main flow. In 

the process of the derivation of the axial shear stress at the wall, we newly introduce four boundary layer models. 

Three of the four models are respectively different turbulent models in the boundary layer and the last one is 

Karman’s momentum integral equation. Our approach of this process is also the same as the one of Marxman et al., 

namely, which is to multiply the correction terms to the skin-friction coefficient in the flat plate boundary layer 

without fuel blowing. The correction terms mean the effects of fuel blowing and swirl injection and they are 

separately derived. Finally, the combination of this expression with Eq. (1) and the empirical rule of the skin-friction 

coefficient in two dimensional flat plate boundary layer without fuel blowing makes it possible to derive regression 

rates of the swirl injection engines.  

 

 

Figure 2: Reynolds analogy 

 

3.1 Reynolds analogy 

Reynolds analogy means the similarity of the velocity boundary layer to the thermal boundary layer. This analogy 

holds because the effect of axial partial differentials in both viscosity and pressure terms is much smaller than radial 

partial differentials and can be ignored in boundary layers. We extend this analogy to the three dimensional 

axisymmetric coordinates. 
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We compare the momentum equation with the energy conservation equation. The axial component of the 

momentum equations can be written as 

 

   
   

  
  𝑟

   

 𝑟
=  (

    

 𝑟  
1

𝑟

   

 𝑟
) (2) 

 

where we have used the hypothesis No. 1 and assumed that the aixal gradients of shear stress and pressure is much 

smaller than the radial ones as an approximation which can commonly be used in the boudary layer. The energy 

conservation law can be written as 

 

   
  

  
  𝑟

  

 𝑟
=

 

   
(
   

 𝑟  
1

𝑟

  

 𝑟
) (3) 

 

where we have assumed the effect of the heat derived from viscosity can be ignored because the convection heat 

transfer, which comes from flame, in other words, from outside of a piece of a microvlume in the boundary layer, is 

much greater than frictional heat generated within it. By the assumption that Prandtl number is 1(hypothesis No. 2), 

we can use Reynolds analogy and relate the temperature distribution with velocity distribution in the boundary layer. 

We can consider the radial distribution of    is similar to the one of 𝑇 in the boundary layer. This similarity can be 

expressed as follows 

 

 
   

   −  
=

  

  − 
 (4) 

 

Then, the heat flux to the wall is linked with the shear force stress at the wall because temperature axial differential at 

the wall is proportional to the heat flux to the wall and the velocity one is proportional to the shear stress at the wall. 

The difference between the scales of the axial and radial differential yields following approximations as 

 

    ≈
   

 
 𝑟 (5.a) 

 

  𝑇 ≈ −
  

 
 𝑟 (5.b) 

 

Eq. (4), (5.a) and (5.b) yields 

 

 ℎ  −
   

  −  
=

      

   

 (6) 

 

From the definition of Stanton numbers and Eq. (6), the following equation can be derived as 

 

 𝐶𝐻  
ℎ

     
=

    

    
 (7) 

 

Here, we define the following nondimensional axial skin-friction parameter we call “axial skin-friction coefficient” 

for the convenience of the subsequent calculations as 

 

 
   

2
 −

    

     
 (= −

   

     
 ) (8) 

 

where the reason why we put minus sign on the middle and right hand of Eq. (8) is that the shear stress at the wall is 

always minus. Therefore, the heat flux to the wall can be written as 

 

 𝑄�̇� = 𝐶𝐻𝜌   ⊿ℎ =
   

2

     
 

   

⊿ℎ (9) 

 

Here, we should focus on the right side of Eq. (9). In this expression, there is no variable related to circumferential 

components. Considering the fact that the circumferential energetic balance is zero because of axisymmetric flows, 

this result is reasonable. Then, we can expect that the axial friction coefficient should be only affected by swirl 

because we also maintain the hypothesis by Marxman et al. that the remained components except the axial friction 

coefficient are regarded as the constants that are mainly determined by ambient temperature and chemical species 

and phases of fuel and  oxidizer used in a motor [11]. Therefore, in the next section, we attempt to express the axial 
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skin-friction coefficient with axial distance, mass flux, swirl number, scale of the motor, or other variables 

determined in advance. 

3.2 Turbulent flow models 

Next, we must express the axial skin-friction coefficient with other parameters we can know in advance. The first 

one of three different turbulent stress models is the Prandtl’s mixing length theory extended to three-dimension by 

Czernuszenko and Rylov [12]. If each eigenvector of the mixing length tensor is parallel to each cylinder coordinate 

axis and the all norms of the eigenvectors are the same, the axial component of the shear stress including Reynolds 

stress are expressed as 

 

 𝜏𝑟 ≈    𝜌𝑙2(|
   ̅̅ ̅̅

 𝑟
−

  ̅̅ ̅̅

𝑟
|  |

   ̅̅ ̅̅

 𝑟
|) 

   ̅̅ ̅̅

 𝑟
 (8) 

 

where we have assumed the circumferential partial differentials are much larger than the axial ones. 

The second one comes from the extended expresssion of the boundary layer theory on vaporing surface from flat 

plate in two dimensional coordinates by Dorance and Dore [13] to three dimensional axisymmetric flows as 

 

 𝜏𝑟 ≈ 𝜏𝑟  (    𝜑 ) (9.a) 

 

 𝜏𝑟 ≈ 𝜏𝑟  (    𝜑 ) (9.b) 

 

where we have assumed that the boundary layer thickness is much thinner than the port radius. The definition of    

and    are    
(   )    

   
 and    

(   )    

   
 respectively. Eq. (9.a) and (9.b) is derived by evaluating Reynolds 

stress and blowing in the same way as they did in the flat plate. Note that    is a constant throughout the fuel port but 

   is not. The reason for this treatment is accounted for the section 3.6. 

Now, we have already introduced two of three turbulent models. From now on, we manipulate these equations and 

evaluate the velocity distribution and the axial skin-friction coefficient. Combining Eq. (8) with (9.a) yields 

 

 𝜏𝑟  
(    𝜑 ) =    𝜌𝑙2(|

   ̅̅ ̅̅

 𝑟
−

  ̅̅ ̅̅

𝑟
|  |

   ̅̅ ̅̅

 𝑟
|) 

   ̅̅ ̅̅

 𝑟
  (10) 

 

Here the power law in cases of no fuel vaporization ( hypotheses No. 6 and 7) is written as 

 

 𝜑 = 𝜂 
   (11.a) 

 

  �̅� = 𝜂 
   (11.b) 

 

where we set 𝑛 = 𝑛 =  / . 

Applying Eq. (11.a) and (11.b) to the absolute values of the velocity partial differentials in Eq. (10) yields 

 

 
   

2

   ( −  )

         
(    𝜑 ) =  𝜂 

2 −
 −  

  
(  

     

     
)𝜂 −

   ( −  )

   𝑒         
 

   

   
 (12) 

 

where we have used 𝑙 =  (𝑅 − 𝑟) and  = 0. . 

Eq.(12) can be integrated to the radial direction from the edge of  the boudary layer to the fuel port wall. This 

integration yields 

 

 
   

2
≈

  (  
   
   

   )

  {1    𝑒  (  
   
   

   )}

  (1   )

  
 (13) 

 

where we have approximated     𝛿  𝛿  and  2𝑅𝑒  
𝑛   . The first term in the right side of Eq. (13) can be 

approximated in the easier way as 

 

 
   

2
= (𝛼 ξ  𝛽 )𝑅𝑒  

    (1   )

  
 (14) 
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where we set (𝛼  𝛽  𝛾 ) = (0.00 69  0.0     − 0.  5). We call     𝑒
/  𝑒

 “swirl strength”. If ξ = 0, Eq. (14) 

becomes the same form as Marxman’s approximation [6]. 

Though the axial skin-friction coefficient has been written as Eq. (14) with variables which show the properties of 

the flows, in Eq. (14), there are three variables we cannot easily know: ξ,   𝑒
, 𝛿 . Therefore, we need three other 

constraint conditions. 

The first one is Boussinesq approximation and this is the third of the three turbulent models as follows 

 

 𝜏𝑟 = (  𝜌 )
   

  

   

   
 (15.a) 

 

 𝜏𝑟 = (  𝜌 )
   

  
 
   

   
 (15.b) 

 

Applying Eq. (15.a) and (15.b) to Eq. (9.a) and (9.b) yield 

 

 
      

(    )   
(    𝜑 ) =

   

   
 (16.a) 

 

 
      

(    )   
(    𝜑 ) =

   

   
 (16.b) 

 

Here, we assume that 
      

(    )   
 consists of the product of two single variable functions which is the function of 𝜂 and 

   respectively in the same way as Marxman’s [5]. In the cases of no blowing, Eq. (16.a) and (16.b) is equivalent to 

the derivative-type of Eq. (11.a) and (11.b). Moreover, we approximate     𝜑 ≈      𝜂 
   because of the 

hypothesis No. 6. Therefore, we can express (16.a) as 

 

 
   

   
=  (  )𝑛 𝜂 

  −1(    𝜂 
  ) (17) 

 

Eq. (17) can be integrated to the radial direction from the edge of the boudary layer to the fuel port wall. Considering

 boundary conditions of 𝜑 (𝜂 = 0) = 0 and 𝜑 (𝜂 =  ) =  , we lead 

 

 𝜑 =
  

  (1 
  
 

  
  )

1 
  
 

 (18.a) 

 

About circumferential direction, in the same way as the derivation of Eq. (18.a), we can derive 

 

 �̅� =
  

  (1 
  
 

  
  )

1 
  
 

 (18.b) 

where we have assumed     𝛿  𝛿 . 

Now, we have evaluated the velocity fields to the radial direction in the boundary layer. These equations are used 

in two situations. One of them is the cases where we compare shear stress between with fuel blowing and with no 

blowing. Another one is the cases where we unite Eq. (14), (18.a), and (18.b) to the Karman’s momentum integral 

equation and derive the axial skin-friction coefficient as a function of axial position. 

3.3 Karman’s momentum integral equation 

Next, we derive the Karman’s momentum integral equation in the axisymmetric pipe flow as the second condition 

to eliminate an unknown variable of Eq. (14). We show the mass conservation law and the momentum conservation 

law:  

Mass conservation law 

 

 
   

  
 

   

 𝑟
 

  

𝑟
= 0 (19) 

 

Momentum conservation law 
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  𝑟

   

 𝑟
= −

1

 

  

  
  (

    

 𝑟  
1

𝑟

   

 𝑟
) (20.a) 

 

 
  

 

𝑟
= −

1

 

  

 𝑟
 (20.b) 

 

   
   

  
  𝑟

   

 𝑟
 

    

𝑟
=  (

    

 𝑟  
1

𝑟

   

 𝑟
−

  

𝑟 )  (20.c) 

 

where we have ignored axial partial differentials in viscous terms. Eq. (19)× 𝑟  +Eq. (20.a) × 𝑟 and the partial 

integration of Eq. (19) yield the momentum integral as 

 

 
 

  
∫ 𝑟  

2 𝑟
 −  

 
−   𝑒

 

  
∫ 𝑟   𝑟

 −  

 
= −

     

 
(    ) −

 

  
∫

𝑟 

 
 𝑟

 −  

 
 (21) 

 

where note that we must consider (𝜌 𝑟)  as a non-zero variable. In axial flows, 
 

  
(
𝑟 

 
) can be shown with the 

velocity of main flows by concerning the edge of boundary layer because 
  

 𝑟
 is approximated 0. However, in swirl 

flows, this assumption cannot be used because of Eq. (20.b). Thus, we must newly consider the method of evaluation 

of the pressure gradient 
 

  
(
𝑟 

 
). Now, the pressure in the boundary layer can be expressed as 

 

 𝑃(  𝑟) = 𝑃(  𝑅 − 𝛿 )  ∫
  

 𝑟
|
 
 𝑟

𝑟

 −  
= 𝑃(  𝑅 − 𝛿 ) − ∫ 𝜌

  
 

𝑟
 𝑟

𝑟

 −  
 (22) 

 

Applying Eq. (22) to the second term in the right side of the Eq. (21) leads 

 

 
 

  
∫

𝑟 

 
 𝑟

 −  

 
= ∫ 𝑟 (

1

 

  

  
|
 −  

−
 

  
∫

  
 

𝑟
 𝑟

𝑟

 −   
)  𝑟

 −  

 
 (23) 

 

The hypothesis No. 4 and Eq. (21) in the case of the edge of the boundary layer yield 

 

 
  

  
|
 −  

= 0 (24) 

 

Because of the hypothesis No. 9, we can divide the last term of Eq. (23) and evaluate it as 

 

 −∫ (𝑟
 

  
∫

  
 

𝑟
 𝑟

𝑟

 −  
)  𝑟

 −  

 
 

= −
 

  
∫ 𝑟 (∫

  
 

𝑟
 𝑟

𝑟

 −  
)  𝑟

 −  

 −  
−

 

  
∫ 𝑟 (∫

  
 

𝑟
 𝑟

 −  

 −  
)  𝑟

 −  

 
−

 

  
∫ 𝑟 (∫

  
 

𝑟
 𝑟

𝑟

 −  
)  𝑟

 −  

 
 (25) 

 ≈
1

2

 

  
 𝑅2𝜔𝑒

2(𝛿 
2 − 𝛿 

2)  
 

  
{
  (170  

  7 2      )    
   

 

    0(   2) 
} 

 

where the last expression of Eq. (25) is approximated in the way that the terms of the largest order of magnitude are 

only taken from the precise answer. Applying Eq. (24) and (25) to Eq. (21) and nondimensionalization yields 

 

 
7( 0  

  1     110)

1  0(   2) 

   

  
≈

   

2
(    )  

1

2

 

  
{ 2   

 −  
 

 (1−
  
 

)
 }  

 

  
{

  (170  
  7 2      )    

 

    0(   2)  (1−
  
 

)
 } (26) 

 

Because the order of magnitude of the last two terms in the right side of Eq. (26) is 
  

  
 and it is much smaller than the 

one of the right side, which is 
 

 
, we can approximate Eq. (26) as 

 

 
7( 0  

  1     110)

1  0(   2) 

   

  
≈

   

2
(    ) (27) 

 

This is Karman’s momentum integral equation in the three dimensional axisymmetric coordinates. This equation is 

the last one of the four models related to boundary layers. 
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3.4 Estimation of the axial skin-friction coefficient in swirl flows with no blowing 

In this section, we aim to show the last condition of three conditions needed to evaluate the axial skin-friction 

coefficient and we attempt to evaluate the rate of it in case of swirl flow and no blowing to the one in the cases of 

axial flow and no blowing. 

Before we introduce the last condition related to swirl decay, we must define the indicator which shows swirl 

strength. Swirl number is a way to express it as follows 

 

 S   
∫ 𝑟      𝑟
 
 

     
  (28) 

 

Considering the hypotheses No. 4 and 5, Ignoring boundary layers and rough calculation yields 

 

 S ≈
 

2
 (29) 

 

Here, we call   “swril strength”. The last condition is the hypothesis No. 8 and the mathematical description of this is 

 

 S ≈ S0    (𝑝 ) or   ≈  0    (𝑝 ) (28) 

 

where 𝑝 = −0.569 × 𝑅𝑒𝐷
−0.277𝐷−1 and these equations are empirically derived from Steenbergen’s research [8] and 

Kito’s research [9]. 

Now, we have assembled necessary and sufficient conditions, which are Eq. (18.a), (18.b), (27), and (28), to 

rewrite Eq. (14) as a single variable function of axial direction. Next, we aim to compare and evaluate 𝐶𝑓 
 with the 

one without blowing and swirling, namely, we evaluate 𝐶𝑓 
 as 

 

 
   

2
|
     

=
   

|
     

   
|
       

   
|
       

   
|
         

   

2
|
   0    0

 (29) 

where 
   

2
|
   0    0

 is equivalent to 
  

2
 in cases of two dimensional flat plate and 

  

2
 has a famous and empirical rule 

as follows 

 

 
  

2
= 0.0 𝑅𝑒 

−0.2 (30) 

 

In this section, we will evaluate 𝐶𝑓 
|
   0   

/𝐶𝑓 
|
   0    0

 with initial swirl strength and axial direction. Now, in 

the cases with no blowing, substituting Eq. (14) and (29) for Eq. (27) and integration of Eq. (27) to the axial direction 

from 0 to z yield 

 

 𝛿 ̅|   0
= {

72(1−  )

7
}

 

    𝑅𝑒𝐷(𝛼  0
   (�̅� ̅)−1

�̅�
 𝛽  ̅)

 

     (31) 

 

where the bar means that the variable is nondimensionalized by the port diameter. By substituting Eq. (31) for Eq. (2

7) and dividing Eq. (27) with swirl by the one without swirl, we can obtain 

 

 
   

|
       

   
|
         

=
   

/2|
          

  /2
= (

  

  
 0

   (�̅� ̅)−1

�̅� ̅
  )

 

    (
  

  
 0    (�̅� )̅   ) (32) 

 

Eq. (32) shows the relation between the axial skin-friction coefficient with swirl and without fuel blowing. This 

evaluation is used in subsequent sections. 

3.5 Estimation of the axial friction coefficient in swirl flows with blowing 

In this section, we start from the comparison of shear stresses between whether there is fuel blowing, and then, we 

express boundary layer thickness and the axial skin-friction coefficient with fuel blowing and axial blowing 

parameter. 
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First of all, we write the shear stress at the wall with fuel blowing as 

 

 𝜏𝑟  |  
=  

   

  |  

   

   
|
 

 (33) 

 

Near the wall, nondimensional axial velocity is approximated as follows 

 

 𝜑 =
  

  (1 
  
 

  
  )

1 
  
 

≈
  

  

1 
  
 

 (34) 

 

Substituting Eq. (34) for Eq. (33) yields 

 

 𝜏𝑟  |  
≈

 

1 
  
 

   

  |  

   
  

   
|
 

=
1

1 
  
 

  |    

  |  

𝜏𝑟  |   0 (35) 

 

Therefore, we can nondimensionalize Eq. (35) as 

 

 
   

2
|
  

=
1

1 
  
 

  |    

  |  

   

2
|
   0

 (36) 

 

Applying Eq. (27) to the both sides of Eq. (36) and integration to the axial distance yield Eq.(37) as 

 

 𝛿 |  
= √

(1   )(1   /2)

1 1 /11    /11  
 𝛿 |   0 (37) 

 

By substituting Eq.(37) for Eq. (27)  and approximation of    in the range from 2 to 50, we can obtain 

 

 
   

|
  

   
|
    

=
1

(1   /2)
√

1 1 /11    /11  
 

(1   )(1   /2)
≈ 𝑞′  

−  
 (38) 

 

where we have set (𝑞′ 𝑘 ) = (0.   5 0.965). 

By combining Eq. (29) with Eq. (30), (32), and (38) we can evaluate the axial skin-friction coefficient as 

 

 
   

2
|
  

= (
  

  
 0

   (�̅� ̅)−1

�̅� ̅
  )

 

    (
  

  
 0    (�̅� ̅)   ) 𝑞′  

−  
0.0 𝑅𝑒 

−0.2  (39) 

3.6 The Derivation of regression rates in swirl injection engines 

In the previous section, we have derived the axial skin-friction coefficient on condition that there is swirl and fuel 

blowing as Eq. (39). In this section, we aim to obtain heat flux to the wall and regression rates in swirl hybrids. Now, 

substituting Eq. (9) for Eq. (39) yields 

 

 𝑄�̇� = (0.0 𝑞′)
 

    𝜌
𝑓

−
  

     ℎ
   

   

(
 

 
)−

 . 

    (  
  

  
 0

   (𝑝 )−1

𝑝 
)

  
(    )(    ) {  

  

  
 0    (𝑝 )}

 

    
𝐺 𝑜

 . 

    �̇�−
  

     (40) 

 

where we have eliminated     with the definition of    and Eq. (39). 

Substituting Eq. (40) for Eq. (1) yields 

 

 �̇� = (  
  

  
 0

   (𝑝 )−1

𝑝 
)

  
    {  

  

  
 0    (𝑝 )} 0.0 𝑞′ (

 

 
)
−0.2

𝜌𝑓
−1   

1−  
𝐺 𝑜

0.  (41)  

 

where the definition of    is    
   ⊿ℎ

   ℎ𝜈
 and    is equivalent to    at quasi-steady states because of Eq. (1) and (9). 

Because    is a function of the thermochemical properties and O/F [11], if O/F is constant,    is constant to the axial 

and radial direction. This is the reason why we consider    as a variable and    as a constant. 

According to the results by Marxman et al. [11], the heat flux to the wall can be expressed as follows 
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 𝑄�̇� = (0.0 𝑞)
 

   𝜌
𝑓

−
 

    ℎ
  

  
(
 

 
)−

 . 

   𝐺𝑜

 . 

   �̇�−
 

    (42)  

 

Therefore, Eq. (1) and Eq. (42) yield 

 

 �̇� = 0.0 𝑞 (
 

 
)
−0.2

𝜌𝑓
−1   

1− 𝐺𝑜
0.  (43) 

 

Here, note that the experimental law about regression rates as follows 

 

 �̇� = 𝑎𝐺𝑜
  (44) 

 

By Karabeyoglu’s theory [14], in axial flows, averaging Eq. (43) in axial direction is equivalent to Eq. (44) and the 

exponent 0.8 on 𝐺𝑜  in Eq. (43) should correspond to the exponent 𝑛  on 𝐺𝑜  in Eq. (44). On the basis of these 

correspondences, the coefficient 𝑎 in Eq. (48) should be  

 

 𝑎0 = 0.0 𝑞 (
 

 
)
−0.2

𝜌𝑓
−1   

1−  (45) 

 

where 𝑎 is replaced by 𝑎0 and (𝑞 𝑘) = ( .  0.  ) [6]. Then, in the same way as Eq. (45), 𝑎 in Eq. (41) should be 

 𝑎 = (  
  

  
 0

   (𝑝 )−1

𝑝 
)

  
    {  

  

  
 0    (𝑝 )} 0.0 𝑞′ (

 

 
)
−0.2

𝜌𝑓
−1   

1−  
 (46) 

 

where 𝑎 is replaced by 𝑎 . Then, the rate of these two coefficients shows how regression rates rise by the initial swirl 

strength  0 as 

 

 
�̇� 

�̇� 
=

  

  
= (  

  

  
 0

   (𝑝 )−1

𝑝 
)

  
    {  

  

  
 0    (𝑝 )}

  

 
   

 −  
 (47) 

 

Thus, we have estimated the heat flux to the wall and regression rates in swirl flows. 

4. The Comparison of the regression rates of swirl engines with the experiments 

In order to validate this prediction model, we can compare the increase rate by swirl between Eq. (47) and the 

experiments by Yuasa et al. [2]. In this chapter, we compare the prediction from Eq. (47) with experiments from the 

two aspects. One of them is the comparison between the representative regression rates of the predictions to the axial 

direction and space averaged values of the experimental results. Another one is about the axial distribution of 

regression rates.  

4.1 The comparison of the representative and averaged regression rates to the axial distance 

The fuel and oxidizer used in Yuasa’s experiments are PMMA and GOX. We set    =  0 for PMMA [15] and 

 = 5.0 ×  0−7 Pa s. To compare our prediction with the averaged data, we set the representative axial location in 

Eq. (47) as L/2. The geometric swirl numbers of the injectors are 0, 9.7, and 19.4 and the range of the oxidizer mass 

flux is from 10 to 70 kg m
-2

 s
-1

. The cases of the port length L=150 mm are shown in Fig. 3 and ones of L=500 mm 

are shown in Fig. 4.  

In Yuasa’s experiments, they said it was too difficult to measure the actual swirl numbers in their motors and when 

they plotted the regression rates, they used a kind of index called geometric swirl number as how strong the swirl 

was. This index is determined only by the geometry of engines and injectors and we think this number is not always 

equal to the actual swirl number. Actually, Motoe et al. [16] conducted numerical simulations about the swirl cold 

flow field where they used the shape or geometry of the chamber similar to Yuasa’s. The calculated swirl numbers 

near the injectors are the 66% of the geometric swirl number. For this reason, we plotted regression rate in Yuasa’s 

experiment with error bar to the swirl number direction. The error bars have the range of the 66% to 100% of the 

geometry swirl numbers. 

Note that in both port lengths, in large swirl numbers, the increase rates of regression rates are largely consistent 

with the experiments and the positive correlation between initial swirl numbers and the increase rates of regression 
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rates also commonly exists in the set of experimental results and our prediction. In our past research, because we 

assumed that the decay of swirl and the axial skin-friction are not affected by fuel blowing, the increase rate was 

estimated to be much larger than the experimental data [17]. In this paper, we have reconsidered that assumption and 

assessed that it does not reflect the actual physical phenomena because the swirl decay is mainly caused by skin-

friction at the wall and fuel blowing should strongly affect it. Then, we have newly considered the methods to 

evaluate the skin friction with fuel blowing and these approaches used in 3.4 and 3.5 have succeeded better than the 

past one. Then, we have successfully evaluated the regression rates in cases of strong swirl. 

 However, in the range of small swirl numbers under 3, the rates of regression rates are less than 1. This seems to 

be because, though we should have solved momentum, angular momentum, and energy coupled differential 

equations, in our model, in order to simplify the problem, we have assumed the exponential decay of swirl in cold 

flows and the separate considerations of the effects of swirl flows and fuel blowing to the skin-friction coefficient. 

However, when applying vortex injection to hybrids, initial swirl numbers will be highly designed to increase 

regression rates and we think that this estimation method seems to be useful. 

 

 

Fig. 3. The ratio of the constant “a” in swirl hybrid rocket engines in the case of L=150[mm]. 

 

 

Fig. 4. The ratio of the constant “a” in swirl hybrid rocket engines in the case of L=500[mm]. 
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4.2 The comparison of the axial distribution of regression rates 

Next, we aim to compare the prediction of the local regression rates of the swirl injection hybrids with the 

experiments conducted by Yuasa et al. The geometric swirl numbers of the injectors are 0, 9.7, and 19.4 and the axial 

location where the local regression rates is measured is from 30 to 500 mm and oxidizer mass flux is 56.9 kg m
-2

  s
-1

. 

Fig. 5 shows the comparison of the local regression rate in axial injection beteween the prediction by Eq. (43) and 

the experimental result. In the experimental data, while the local regression rate decreases from the front edge of the 

fuel port to the middle of the fuel port and increase to the end, the predicted regression rate by Marxman’s evaluation 

constantly decreases through all the axial location. Furthermore, the location where the prediction agrees with the 

experimental data is only around the local minimun position. We think this disagreement suggests that other effects 

which increase regression rates such as radiation and the increase of the mass flux by fuel blowing have to be 

considered. 

In Fig. 6, the prediction of the local regression rates by Eq. (41) is compared with Yuasa’s experiments of the swirl 

injection hybrid mortors. Similar to the case of axial injection, while both predicted regression rates and experimental 

results are the same order of magnitude in the high swirl numbers, their values are not the same. As is the case in the 

comparison of averaged rates, especially in low swirl numbers, the prediction is much separated from the 

experimental data because Eq. (47) takes values under 1. 

Because the theoretical accuracy of the regression rate prediction in axial injection hybrids is not enough, even if we 

observe Fig.6 coutiously, the improvement of our model will be difficult. We think that, about the axial distribution 

of the regression rates, before we start to focus on improving the evaluation of the effencts by swirl injection, it is 

important to attempt to improve the prediction of the local regresison  rates distribuition in axial flows. 

 

Figure 5. The comparison of the regression rates in axial hybrids between the Marxman’s prediction method and the 

Yuasa’s experiment. 
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Figure 6. The comparison of the regression rates in swirl hybrids between our theoretical prediction and the Yuasa’s 

experiments. 

5. Conclusion 

In this paper, we have theoretically reconstructed and extended Marxman’s quasi-steady boundary layer 

combustion model and the prediction method of regression rates in swirling hybrid rocket motors, which has been led 

by the extension from the two dimensional flat plate boundary layer theory to the three dimensional axisymmetric 

theory. The derived heat flux equation includes the effect of initial swirl strength and the strengthened fuel blocking 

effect by swirl. The blocking exponent in strong swirl injections is calculated to be 0.965 in contrast to 0.77 in axial 

injections. By using this heat flux, eventually, we have derived the equation to evaluate regression rates in swirling 

hybrid rocket motors. 

To confirm the accuracy of this prediction method, we have compared the predicted results with experimental ones 

by Yuasa et al in two ways. One of them is to compare the representative increase rates of regression rates by swirl 

through the axial direction with the averaged ones from experiments. Though the assumed flow field seems to be 

different from experiments to some extent, the estimation of increasing rates is in the same order of magnitude in all 

swirl strength and is especially well fit in strong swirls. Another one is to compare the predicted local regression 

rates with experimental data from Yuasa et al. in the both cases of axial and swirl flows. The prediction by the 

classical theory for axial injection motors constructed by Marxman is compared with the data in the case of axial 

flow and the result was of the same order of magnitude, however, is not accurate enough to claim the regression rate 

can be predicted to know the detailed performance. We think the reason for this disagreement is that other effects 

which increase regression rates such as radiation and the increase of the mass flux by fuel blowing have to be 

considered. In swirl injection, because the theory derived in this paper is based on the classical one by Marxman et 

al., the accuracy of the prediction is also low. Therefore, in order to improve the prediction of the local regression 

rates in swirl injection hybrid motors, we should start from some theoretical correction of Marxman’s boundary layer 

combustion model. 
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