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Abstract
Lighthill’s well-known ideal dissociating gas model is still a fundamental part of analytical and engineering
methods describing dissociation effects in high temperature hypersonic flow. But its availability only for
a one-component gas limits its application in case of air more to qualitative than quantitative results.
Therefore, a new gas model has been developed which yields the degree of dissociation in equilibrium
flow for a five-component gas. Like Lighthill’s model it is based on statistical mechanics and introduces
a characteristic dissociation density. Compared to a complete solution for equilibrium air, its maximum
deviation only amounts to 4 % for a temperature range up to 12 000 K.

Nomenclature

A = species A
B = species B
h = Planck constant, h = 6.6256 x 10−34 J · s
k = Boltzmann constant, k = 1.38054 x 10−23 J/K
M = total mass
ma = mass of atom of species A
mb = mass of atom of species B
N = number of atoms, molecules
NA = total number of atoms species A
NB = total number of atoms species B
Q = partition function
T = temperature
αa = degree of dissociation of species A
αb = degree of dissociation of species B
ϵ = relative deviation, ϵ = |α − αre f |/αre f

ρ = density
ρD = characteristic density of dissociation
ΘD = characteristic temperature of dissociation
Θrot = characteristic temperature of rotation
Θvib = characteristic temperature of vibration
ωi = mass fraction of species i

Subcripts

el = electronic excitation

Superscripts

a, aa = atoms, molecules of species A at temperature T
b, bb = atoms, molecules of species B at temperature T
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1. Introduction

The reactive hypersonic flow around simple as well as complex vehicles is nowadays studied by sophisticated numerical
simulations. In general, these include viscous effects as well as thermal and chemical relaxation processes at high
temperatures. Numerous computational results in literature prove the high capability of computational fluid dynamics.

Nevertheless, to gain physical understanding of the main mechanism of reactive flows, simple gas models are
required which may even allow to find solutions based on analytical methods. Furthermore, simple but sufficiently
accurate gas models are necessary for engineering methods and relations to calculate main flow characteristics like
stagnation point heat fluxes, shock stand-off distances etc. One of these methods to model the flow-chemistry interac-
tion for high temperatures is the well-known ideal dissociating gas model of Lighthill [1]. It has been used in numerous
papers [2,3,4] to study the effect of dissociation on various hypersonic flow phenomena. This model is based on a single
species gas consisting of atoms and molecules. For equilibrium conditions it allows to determine the degree of disso-
ciation α as function of the actual gas temperature and density. The derivation of this model makes use of statistical
mechanics and a simplification which is valid in the temperature range from 1 000 K to 7 000 K.

Unfortunately, in hypersonics most interest is devoted to air mainly consisting of oxygen and nitrogen. The
dissociation behaviour of these two species is quite different which leads to significant deviations when considering
air as a single species gas. For example, oxygen dissociates in the temperature range between 2 000 K and 6 000 K,
whereas significant nitrogen dissociation takes place from 4 000 K to about 8 000 K.

The aim of the present paper is to develop an extended ideal dissociation gas model which takes into account the
two components oxygen and nitrogen of air. As Lighthill’s model it is based on the description by statistical mechanics
and suitable simplifications. It leads to analytical solutions for the degree of dissociation, the equation of state and
other parameters of the thermodynamic state. A comparison with more accurate gas models for air shows a very good
agreement with this in the following derived simple model.

2. Gas model and theoretical description

In the following three different gas models for air will be presented which are used to describe the equilibrium gas
properties of air at high temperatures. The degree of complexity increases from one model to the other, but therewith
also its accuracy.

2.1 Lighthill’s ideal dissociating gas model

The detailed derivation of this well-known gas model is described in many papers and text books [5]. Therefore, in the
following only a brief description of its main features is given.

Employing statistical mechanics for equilibrium conditions it is possible to derive an expression for the degree
of dissociation α of a single component gas consisting of atoms (a) and molecules (aa):
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The degree of dissociation is defined as the ratio of the mass of dissociated components versus the total mass

α =
ma · Na

M
(2)

with ma being the mass of an atom, Na the number of atoms and the total mass M. The degree of dissociation
varies from zero (non-dissociated gas) to one (fully dissociated gas). Lighthill found that the expression in the square
brackets of Eq. (1) only slightly varies with temperature in the interesting temperature range from 1 000 K to 7 000 K.
Since this expression has the dimension of a density, he called this characteristic dissociation density ρD which is
constant for the mentioned temperature range. Therewith, Eq. (1) simplifies to the well-known form:

α2

1 − α =
ρd

ρ
e−ΘD/T (3)

The values of ρD for oxygen and nitrogen have been approximated by Lighthill to 1.5 x 105 kg/m3 and
1.3 x 105 kg/m3, respectively. Whereas these values do not show a big difference, the characteristic dissociation
temperatures ΘD for oxygen and nitrogen significantly deviate from each other. The characteristic dissociation temper-
ature for oxygen amounts to 59 500 K and for nitrogen to 113 000 K. This big difference does not allow to apply the
simple Eq. (3) for air consisting of a mixture of oxygen and nitrogen. As it is well known, the different characteristics
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of the oxygen and nitrogen dissociation lead to a s-shaped curve of the degree of dissociation of air versus temperature.
This behaviour cannot be described by Eq. (3). Therefore, in the following two more sophisticated gas models will be
described which are based on Lighthill’s ideal dissociating gas model. Especially the last model is capable to describe
physically correct the complex dissociation behaviour of air.

2.2 Extension of Lighthill’s gas model for a four-component gas

In the interesting flow regime of reentry into earth atmosphere the dominant chemical reactions are given by the oxygen
and nitrogen dissociation. Therefore, in a first attempt the dissociation characteristics of air are modeled by a four
component air model with the constituents O2, O, N2 and N according to the simple reactions in chemical equilibrium:

A2 
 A + A

B2 
 B + B

It is straightforward to show that in this case the mass action laws of each single component remain valid [5]:

(Na)2

Naa =
(Qa)2

Qaa e−DA/(kT ) (4)

and

(Nb)2

Nbb =
(Qb)2

Qbb e−DB/(kT ) (5)

Furthermore, molar conservation yields:

Na + 2 · Naa = NA (6)
Nb + 2 · Nbb = NB (7)

with the individual particle numbers Na, Nb etc. and the total particle numbers NA and NB.
The total degree of dissociation is defined as:

α =
maNa + mbNb

M
= αa + αb (8)

which is simply the sum of the individual degrees of dissociation. It is convenient to introduce the mass fractions
of each species:

ωi =
mi · Ni

M
(9)

with i = a, aa, b, bb, A and B.
The elimination of the actual molecular particle numbers Naa and Nbb by Eqs. (6) and (7) in the mass action laws

leads to

α2
a

ωA − αa
=
ρD,A2

ρ
e−ΘD,A2 /T (10)

α2
b

ωB − αb
=
ρD,B2

ρ
e−ΘD,B2 /T (11)

where the characteristic dissociation densities are given by:

ρD,A2 =
ma

2V
(Qa)2

Qaa (12)

and

ρD,B2 =
mb

2V
(Qb)2

Qbb (13)
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According to Eqs. (10) and (11) the degrees of dissociation can be written as:

αa =
ρD,A2

2ρ
e−ΘD,A2 /T

[√
1 + 4ωA

ρ

ρD,A2

eΘD,A2 /T − 1
]

(14)

and

αb =
ρD,B2

2ρ
e−ΘD,B2 /T

[√
1 + ωB

ρ

ρD,B2

eΘD,B2 /T − 1
]

(15)
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Figure 1: Dissociation density for O2 and N2 and approximated values by Lighthill

For a single component gas, i.e. ωA = ωB = 1, the equations reduce to Lighthill’s original gas model. The
characteristic dissociation densities have been computed according to Eqs. (12) and (13) for nitrogen and oxygen. The
partition functions took into account translational, rotational, vibrational, electronic excitation and a finite dissociation
energy. The achieved dissociation densities for O2 and N2 are shown in Fig. 1 for a temperature range from 1 200 K to
12 000 K. For comparison, also the constant approximated values according to Lighthill are given. For the temperature
range considered by Lighthill the maximum deviation of the exact value from the approximated one amounts to 1.5 %.
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Figure 2: Degree of dissociation for four-component gas model and relative deviation to reference data

The evaluation of the degree of dissociation according to Eqs. (8), (14) and (15) yields the behaviour shown in
Fig. 2. The data is compared with results from an in-house code for a five-component equilibrium air model which is
based on statistical mechanics formulations employing partition functions. The results of this code can be considered
as ’reference’ or ’most accurate’ data. In Fig. 3 also the relative deviation between both solutions is shown. The
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maximum deviation amounts to 22 % which is not acceptable for a sophisticated physical model. This deviation is
caused by neglecting the formation of NO and its subsequent dissociation at higher temperatures.
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Figure 3: Relative deviation between four-component gas model and reference data, ρD = const.

2.3 Extension to a five-component gas model

Motivated by the results achieved with the four-component gas model, Lighthill’s ideal dissociating gas model has
been extended to a five-component air model. The aim of this is to reduce the error in the degree of dissociation. The
five-component gas model covers the species: N2, O2, O, N and NO. The atom conservation equations are now given
by:

NA = Na + 2Naa + Nab = const. (16)
NB = Nb + 2Nbb + Nab = const. (17)

and the mass conservation is expressed as:

M = maNA + mbNB = const. (18)

with the suffix A for oxygen and B for the nitrogen species. The definition of the degree of dissociation is
unchanged according to Eq. (8). It has to be stated that for reasons of simplicity the formation and dissociation of the
combined molecule AB has not been considered according to the Zel’dovich Neumann exchange reactions but simply
by the reaction A+ B
 AB. This procedure is valid for equilibrium conditions. According to the derivation described
above this leads to the mass action law for the new component:

Nab =
αaαbM2

mamb

Qab

QaQb eΘD,AB/T (19)

Two new characteristic dissociation densities can be defined describing the gas properties:

ρD,AB =
ma

2V
QaQb

Qab (20)

and

ρD,BA =
mb
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· ρD,AB (21)

with
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From the mass action laws for species A and B and with the help of Eq. (19), finally the following two equations
are derived for the five-component gas model:

αa =
ρD,A2
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and
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These are two implicit solutions for the degree of dissociation for a representative air gas model. An analytical
explicit solution for αa and αb is quite tedious if that is possible at all. But a simple solution strategy is proposed
which yields highly accurate values. In this case, Eqs. (23) and (24) are solved iteratively employing the degrees of
dissociation of the four-component gas model as first guess values in the square roots of Eqs. (23) and (24). Since for
the four-component gas model αa and αb can directly be determined from Eqs. (14) and (15), this procedure directly
yields the degrees of dissociation for the five-component gas model. The results shown in the following have been
achieved with only one iteration step, i.e. the degrees of dissociation at the right sides of Eqs. (23) and (24) have been
approximated by those of the four-component gas model. The new characteristic dissociation densities ρD,AB and ρD,BA

are still unknown in Eqs. (23) and (24). Their values have been computed according to Eqs. (21) and (22) for ON and
NO and plotted versus temperature in Fig. 4.
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Figure 4: Characteristic dissociation densities ρD,ON and ρD,NO

They show a weak temperature dependence which corresponding to Lighthill’s ideal dissociating gas model can
be approximated quite well by constant values with ρD,ON ≈ 7x104 kg/m3 and accordingly ρD,NO ≈ 6.1x104 kg/m3.

The results for the five-component air model are shown in Fig. 5 in comparison with reference data which are
achieved with an in-house code employing a real gas model which is based on the equations of statistical mechanics
and a thorough computation of the partition functions. Contrary to the four-component gas model now the s-shape
behaviour visible for the degree of dissociation for the intermediate temperature regime is weaker yielding a better
agreement to the reference data. This behaviour is caused by the formation of nitric oxyde at intermediate temperatures
and its disappearance at even higher temperatures. This behaviour is missed in the four-component air model.
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Figure 5: Degree of dissociation for five-component air model

With decreasing density for constant temperature, the degree of dissociation increases which is in agreement with
Lighthill’s ideal dissociating gas model. From Fig. 5 it is already obvious that there is a good agreement between the
five-component gas model and the reference data. In case that the characteristic dissociation densities are calculated
from Eqs. (12), (13), (21) and (22), i.e. their temperature dependence is taken into account as it is shown e.g. in Fig. 4, a
maximum deviation of only about 3.5 % results between the five-component model and the reference data (see Fig. 6).
Of course, in this case the calculation is a little cumbersome. The relative large errors for the low temperature regime
are caused by the small dissociation degrees which in this regime are close to zero (see Fig. 5). This also explains the
decrease of the relative error in this temperature regime with increasing temperature. The determination of the degree
of dissociation becomes much less laborious if the characteristic dissociation densities are approximated as constant
value as it was proposed by Lighthill. In this case, for the interesting temperature range the deviation between the
five-component are model and the reference data is somehow little larger than for the previous case but not larger than
4 % (see Fig. 7). This impressively shows the validity of this simplification.
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Figure 6: Relative deviation of the degree of dissociation for the five-component gas model to the reference data,
characteristic densities of dissociation temperature dependent

The deviation of the equation of state and of the caloric equation to describe the internal energy and therewith
the enthalpy of the gas is straightforward, but skipped at this place.
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Figure 7: Relative deviation of the degree of dissociation for the five-component gas model to the reference data, con-
stant characteristic densities of dissociation, ρD,O2 = 1.5x105 kg/m3, ρD,N2 = 1.3x105 kg/m3, ρD,ON = 7.0x104 kg/m3

3. Conclusions

Despite the tremendous capabilities of today’s numerical methods, simple analytical solutions of fundamental real gas
phenomena are still necessary and worthwhile to be developed. These analytical models are useful to set up engineering
relations and as part of more sophisticated models to describe more complex flow phenomena. Last but not least they
are probably the most powerful tool to thoroughly analyze the physics of the considered phenomenon. For these
reasons, Lighthill’s ideal dissociating gas model is still in use for many fundamental studies. Its simplicity results from
the limitation of considering only a one-component gas. This limits its accuracy especially for the interesting case of
air with its different dissociation behaviour of oxygen and nitrogen.

In order to overcome these drawbacks, a five-component ideal dissociating gas model has been developed. Like
Lighthill’s model the present one introduces a characteristic dissociation density. It is shown that it is justified to
approximate this value as a constant over the temperature range of interest which extends up to 12 000 K. Compared to
an accurate equilibrium gas model, the maximum error of the new ideal dissociating gas model only amounts to 4 %.
This is much better than Lighthill’s model applying it for the case of air.

The application of this new gas model to determine not only the degree of dissociation but also the conditions of
the thermal state and the gas enthalpy is straightforward.
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