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Abstract 
In this study, a method to control the fall-down area of a solid stage during launcher ascent is presented. The 

strategy is based firstly on the real-time estimation of the propulsive dispersions using a non-linear method. 

The impact control is included in more general launcher guidance. The algorithm is based on an analytical 

prediction-correction of the launcher trajectory and is sufficiently accurate after estimation of the propulsive 

dispersions to allow an effective limitation of the stage fall-down area. Finally the impact control efficiency 

and the launcher performance losses are evaluated statistically on a test case by large monte-carlo simulations. 

The results show that the re-entry conditions and the stage impact zone are controlled without excessive 

reduction of the launcher performance. 

 

1. Introduction 

Classically, to control the impact zone of a liquid stage, the powered flight phase of the stage is aimed at a 

predetermined orbit established in relation to safety requirements. The motor is shut down when the characteristics of 

the orbit, as estimated by the calculations of the on-board computer, are those of the target orbit. The impact zone 

area is thus defined by the guidance errors at stage separation and the debris dispersions after breakup at re-entry in 

the high atmosphere. Unlike liquid propulsion, a solid rocket motor cannot be switched off on request, so specific 

conditions cannot be reached precisely at burn out in order to limit the stage fall-down area. Despite this drawback, 

solid motors may bring certain benefits: a better long-term storage capability, a cheaper and simpler propulsion 

system, compactness, a higher reliability. 

 

Various launch vehicles use stages with solid rocket motors: ASLV and PSLV  (India), MINOTAUR and PEGASUS 

(OSC, United States), ATHENA (Lockheed Martin, United States), SHAVIT  (Israel), VLS 4 (Brazil), START 1 

(Russia), VEGA (Europe). They are small and medium launchers, but heavy launchers projects are underway as the 

future European Launcher Ariane 6 with the version “PPH” whose the two first stages using solid propulsion offer 

better cost competitiveness than a cryogenic core design.  

By using upper solid stages, technical difficulties can arise as the limitation of the stage impact area after burn out. 

To mitigate this disadvantage an active control of the stage impact zone can be considered. To reach this objective, a 

guidance algorithm based on a prediction-correction scheme of the stage impact location combined with an estimator 

of the propulsive dispersions is proposed. 

This preliminary study is a proof of concept, exploring the capabilities of a guidance method to limit the impact zone 

of a solid upper stage while preserving the launcher performance. In particular, this guidance method has to meet the 

following requirements: 

- The guidance should be autonomous for on-board application 

- The impact zone should stay within bounds, given propulsive, mass, atmospheric and aerodynamic dispersions, 

- The launcher performance should be preserved, 

- The guidance and control method should be simple and robust enough, as it would need to be implemented 

aboard a launcher. 

2. The propulsive dispersions estimator 

The control of the solid stage impact zone is based on the stage trajectory prediction until burnout. This prediction 

depends at first order on the velocity impulse remaining to deliver which is linked to the specific impulse (Isp) and 

the mass dispersions. So the estimation of the propulsive and mass dispersions is required for an accurate trajectory 
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prediction. As the classical extended Kalman filter fails on this problem due to high no linearity, we propose a new 

estimation approach based on a non linear identification method using only the longitudinal acceleration or the 

recorded Vs to estimate at each instant the propulsive parameters (flow rate (q), specific impulse (Isp) and 

incidentally the mass). It should be noted that to determine the dispersions on the specific impulse and mass from 

acceleration measures, an accurate estimation of the flow rate is needed first (see the thrust equation T = qg0Isp and  

= T/m). 

Thereafter, we define the following notation: index 0 refers to the propulsion model (or “nominal”); index 1 refers to 

real propulsion. 

 

2.1.  Flow rate estimation 

Let q0(t) be the model flow rate function and q1(t) the dispersed flow rate function. We introduce a “time scaling” 

function g(t) which reflects a shift of time relative to the “nominal” time due to the flow rate dispersion. We assume 

that this function is strictly increasing, positive, continuous and differentiable. 

 

   t : (real time)                   t0 = g(t)  ( nominal time) 

 

We assume that g(t) follows the principle of mass conservation. Thus, at any given time, we must have: 
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So, for v>0, the necessary condition must be verified: 

      vgqvgvq 01
  (1) 

2.2.  Specific impulse estimation 

The specific impulse scattering is modelled using an additional function l(t): 

   )()(1)( 01 tgIsptltIsp   (2) 

Using the relations above, the relation between the real and nominal accelerations is given by: 

  )()())(1()( 01 tgtgtlt   (3) 

2.3. Estimation principle 

For given ordered measurement points (t1, t2 ... ti ...tm+1), the propulsive velocity measurements V1(ti) are provided 

by an inertial navigation system (INS). The following relationship which expresses the link between the 

measurements (V1(ti)) and the thrust dynamic must be verified: 

For i = 2, m+1:
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(4) 

The function l(u) will be considered as linear on the interval [t1, tm+1]: 

l(u) = l1 +  l2 u    (u=t-t1) 

So, for each measurement V1(ti) at ti, using (4) we obtain: 

  

(5) 

))((0 itgV is the nominal non gravitational velocity delivered until the reference time g(ti). 0V is a known function 

and can be tabulated.  We suppose that an   approximation of g(u) is known as a second degree polynomial on the 

measurement interval [t1, tm+1]: 
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3210)( uauaaugug     1ttu   (6) 

We propose to compute a correction of g given by:  

  Δg(u)= Δa1 + Δa2 u +Δa3 u
2
                                              (6 b) 

By developing the right side of the equation (5) at first order with respect to (a1, a2, a3) and rearranging we obtain a 

linear system:  

bAx   (7)        

Where A is a (m x 3) matrix and x = (Δa1, Δa2, Δa3). 

2.4.  Computation process 

If m > 3 the linear system (7) is overdetermined, a least mean square solution  is computed by solving A
T
 A x = A

T
 b   

Then we can improve g(u) given by (6) with Δg(u) (6 b) on the  interval [t1, tm+1]: 

iii aaa       (i=1,3) (8)        

Equation (5) is non linear wrt the parameters (ai ), so the solution of the linear system (7) must be used iteratively 

until the condition: 

 

Δa1= Δa2 = Δa3 = 0. The accuracy of the estimation is then given by: 

xbbbxE TT )(  (9) 

which reflects the estimation error on Vis (in (m/s)
2
). Finally a robust two-steps process is used to determine g(u) 

and l(u): 

1. Resolution of (5) using the solution given by (7) and (8) with l(u) fixed 

2. E(x) minimization by moving l1 et l2 while g(u) is fixed in the opposite direction of the gradient: (
21
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,
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).   

If the two steps of the above process are iterated, we have verified that this process converges always to the 

minimum of E(x) in few iterations with weak hypothesis on the initial conditions (for instance with  g(u)=g0+u, 

l(u)=0). 

When E(x) reaches its minimum, the g(u) and l(u) functions are considered known, the real flow rate and specific 

impulse can be determined by (1) and (2) and are used for time-extrapolation and trajectory prediction. The predicted 

burnout time is given simply by the positive solution of a 2
nd

 degree equation: 

tf1 = g
-1

(tf0) 

where tf0 is the nominal burnout time. 

2.5.  Simulation and tests 

The test case concerns the estimation of the propulsive dispersions of the third stage of the VEGA launcher (Z9).The 

Zefiro 9 (Z9) is a solid-fuel rocket motor (SRM), which equips the Vega launch vehicle’s third stage. The nominal 

thrust profile (reference R6) is presented figure 1.  

 
Figure 1: Z9 nominal vacuum thrust (from reference [R6]) 
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The thrust envelope specification for the Z9 SRM is shown below (source ESA reference [R7]): upper and lower 

envelope (in red), nominal thrust prediction (in blue) and thrust reconstruction from SRM tests (in black). From the 

figure below, the maximum allowed dispersions with respect to the nominal case are estimated: ±3% for the burn 

time (or the flow rate), ±3.5%.for the thrust. 

 
Figure 2 Z9 thrust envelope (from reference [R7]) 

 

To generate the real data recordings, INS errors (magnitude of the acceleration measurements errors: 1.5 10
-4

 g) are 

simulated with an INS velocity quantization effect. The non gravitational velocity measures (Vi) are used. The Vi 

measures are generated every 0.04s and the vector sampling length is fixed to 14s (m=350). The tests have shown 

that the flow rate and the specific impulse scatterings are observable and separable and can be identified in real time 

thanks to the computation process given at §2.4. Moreover any dispersion on the initial mass is identified and the 

burnout time can be predicted. 

The accuracy is generally better than 0.5 % of the real flow rate and specific impulse. The CPU time is quite short: 

(single estimation) ~ 1 10
-3

 s (Intel Core 2 Duo T5870 2. GHz). The algorithm is simple and robust enough to allow 

onboard applications. 

The figure 3 presents a result of the dispersions estimation. For this test case, the real dispersions are: dq= +3% 

varying to +3.8%, dIsp= -2% (dotted lines). The method converges after an observation period of 10 s. The 

estimation error E(x) remains close to zero until the beginning of the thrust tail-off (110s). 
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Figure 3 : Estimation of flow rate  and Isp dispersions 

3. The impact zone limitation strategy 

3.1.  Overview 

As stated before, the strategy is in closed-loop. At each call of the guidance (typically every 2s), the control (written 

as the thrust orientation angles) is computed in four phases: 

Phase 1: Dispersed flow mass / Isp estimation 

Phase 2: Ballistic impact point prediction, with (q, Isp) estimation. To estimate the real impact, a fixed distance is 

considered between an impact point taking into account the drag and the predicted ballistic impact. 

Phase 3: Analytic derivatives of the range wrt the control parameters computation. 

Phase 4: Control correction by solving analytically a minimization problem with constraints. 
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           Figure 4 : Schematic diagram of the control of the stage fall-down area 

 

3.2. Control frame and parameterization 

 Guidance frame 

The control is the thrust orientation during the powered stage flight. The thrust orientation is defined by two angles 

(,) in the guidance frame. The guidance frame is inertial and is fixed at motor ignition. It axes ( ,   , ) are defined 

by the aimed transfer orbit radius direction at nominal end position on the transfer orbit, opposite to the 

angular momentum, x

 

 

 

 

 

 

 

 

 

 

 

Figure 5 : Thrust attitude in the control frame 

 

The angles  and  determine the orientation of the thrust respectively in the trajectory plane and in the out-of-plane 

direction. This choice allows decoupling the equations of dynamics in the plane and out of the orbital plane. The 

angles are expressed as linear functions of time: 

  tt   
0    Pitch (in-plane orientation)          (10) 

tt   0)(  Yaw (out-of-plane orientation) 

This parameterization is near optimal for short boosts (see [R4]).  

3.3. Simple Launcher guidance for upper stages 

The first stages are flying in atmosphere. So, during this phase, the angle of attack must remain close to zero to avoid 

high structural loads. For these stages, the guidance law reduces to follow a pre-programmed attitude law based on 

gravity-turn (thrust attitude along the nominal trajectory). For the next stages flying out of the atmosphere, the thrust 

orientation is free, we will assume: 
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- A solid stage providing a major part of the necessary V and for which the fall-down zone must be controlled. 

- A reignitable stage (last stage using liquid propulsion) in charge firstly to reach a transfer orbit, and, after a 

ballistic phase and a second boost, to deliver the payload on the final orbit. 

 

For this classical orbital maneuver strategy, particularly if the final orbit is circular, the transfer and final orbits need 

to be defined by only four orbital parameters (semi-major axis, eccentricity, inclination, ascending node (a, e, i, ) ). 

We will suppose also that the orbital transfer requires only small corrections of the orbital plane (defined by i and ), 

then the control attitude during the boosts can be decoupled inside and outside the orbital plane. 

The guidance is based on a prediction – correction of the orbital parameters reached at the end of each boost of the 

final stage. 

 Orbit  prediction 

The prediction is carried out using the control parameterization (10). Writing second order Taylor developments of 

the control (considering the variations t and (t) as small) gives the following equations written in matrix form: 

       


















U

Q

S

MIdbtgbttVtXftX  ,2

2

1
00

     


















P

I

L

MIdbtgtVftV  ,0  

(11) 

t0: current guidance time  

tb: time-to-go until burnout 

tf : final time (t0 + tb) 

X: position vector 

V: velocity vector 

Id: identity vector 

g : mean gravity 1
st
 order integral (with J2 and a third degree polynomial approximation) 

g : mean gravity 2
nd

 order integral (with J2 and a third degree polynomial approximation) 

M: (33) matrix with coefficients computed from a second order Taylor development wrt (θ, ψ); the matrix M can be 

written like: 



















222

210

210

cba

BBB

AAA

M  with coefficients depending only on (   ,0,,0 ). 

 L, I, P, S, Q, U: 1
st
  and 2

nd
  order acceleration integrals of terms (0, 0.t, 0.t

2
) computed with tabulated data and 

corrected with propulsive dispersions and mass estimations. The gravity integrals are written as third order 

polynomial approximations on the thrust arc. 

Note: the prediction accuracy is increased if the relation (11) is cut in several segments of time. 

 Orbit  correction 

 

- Thrust direction in the out-of-plane direction 

0 and    are determined explicitly at each guidance call by writing the condition in the guidance frame using (11) 

(the components of the final state vector ),( VX


 must be equal zero in the direction of the angular momentum of the 

target orbit): 

  

 

- Thrust direction in the orbital plane 

 

The derivatives:  
0
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

 )( ftV
 are computed using the relation (11) :  

    )0,0().,.(  fTVfTX
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Using (11) and the derivatives of M above, the derivatives computation of ),( VX


 wrt (  ,0 ) is straightforward. 

bt

ftX



 )(


, 
bt

ftV



 )(


 are also computed easily as M is time-independent. 

Using the derivatives of the state vector we can compute the derivatives of the apogee and perigee altitudes with 

respect to (  ,0 , tb). 

 
Pitch and time-to-go corrections 

By using the more practical parameter V instead tb (equivalence is given by bdtftVd )( ), the control corrections 

at each guidance call are solution of the system: 

 

hperiVd
V

hperi
d

hperi
d

hperi

hapoVd
V

hapo
d

hapo
d

hapo

















































0
0

0
0

  (12) 

Where hapo , hperi
1
 are the corrections required on the altitudes of apogee and perigee. 

The system (12) is overdetermined. Therefore, we solve firstly this system considering d =0 and, to stay in the 

linear validity domain of the parameters variation, with the constraints: 

maxmax,00 VdVddd 


       (13) 

(Note: Values of hapo  and hperi  are automatically reduced if the system (12) with the constraints (13) has no 

solution) 

 

Optimisation of the Launcher performance by V minimization 

After correction of (V, 0) with dV and d0 solutions of (12) with the constraints (13), V can be minimized by 

moving the solution ( V,,0   ) in the plane tangent to the constraints (12) and by varying firstly the additional 

parameter  . Thus, the problem depends only on d  and can be stated as: 







d
V




min  

        The following constraints must be verified with any variation of  : 

       
00

0

00
0


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










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











Vd
V

hperi
d

hperi
d
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V
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d
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d
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

















 

Where:  











 ddd
V

Vd








 0

0;     and           

max

max

max0
0

0




















dd

Vdd
V

Vd

ddd















 

The derivatives





 0 , 


 V
, with the condition of constraints verification (equation (12) with a second member equal 

to zero), verify the relations: 

                                                           
1
 For circular orbits, the variations of the semi-major axis and eccentricity (a, e) will be preferably used in the 

system (12) instead ( hapo , hperi ). 



Solenn Hervouet, Loïc Perrot 

     

8 

 

)(
10





 






















 hperi

V

hapohapo

V

hperi
 

)
00

(
1

  





















 hperihapohapohperiV
           

 
V

hapohperi

V

hperihapo



















00 
 

 

Guidance initialisation 

The efficiency of this very simple guidance algorithm depends nevertheless on the control initialization. The 

initialisation of the guidance control (V, (t), (t)) can be based on the open-loop control of the optimized nominal 

trajectory given during the mission preparation. 

Nevertheless, for orbital transfer between near-circular orbits (say eccentricity less than 0.1), the V can be 

approximated by the classical Hohman transfer and the thrust attitude by the hypothesis of tangential thrust. In this 

case, using this initial control, tests have shown a good convergence to the solution. 

3.4. Ballistic impact prevision 

We express the range as an angle  between the current position and the position of the impact (=1+2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 : Parameters of the Ballistic range prevision 

 

The control strategy is built from an analytic prediction of this range. We have to predict first the position/velocity of 

the launcher at stage burn-out, and the ballistic impact given this position/velocity. The prediction of the state vector 

at burn-out is performed thanks to the equations (11). 

 

Keplerian impact prediction 

The range 2 can be explicitly expressed as a function of the radius (Rb), the velocity (Vb), the path angle (b) at 

burnout and the orbit parameters (a, e) using classical conics formulas (see reference [R3] for details). 

3.5. Analytic derivatives 

The derivatives are computed in two phases. The parameters (Rb, Vb, b) at stage burnout are found using (11). Then, 

we can express first the derivative of 2 wrt (Rb, Vb, b) (see [R3] ). Using (11) and the derivatives of M wrt the 

control parameters, the derivatives of (Rb,Vb,b) wrt the control parameters are computed. Using both sets of 

derivatives, we can then write the total derivatives of the range angle () wrt the control parameters.  

3.6. Control correction 

The path angle at burnout (b) acts directly on the propellant consumption of the upper stage. The variable b is 

linked directly to the path angle at 120km (120). By controlling 120, we can control both the propellant consumption 
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of the upper stage and the atmospheric re-entry. Therefore we impose that 120 lies in a certain interval. For that, the 

derivatives of the control wrt the path angle at 120km are used, according the situation, to minimize or to maximize 

the path angle at re-entry. The problem is written as a set of equations and constraints that depend on the pitch 

control variations. 

The formulas for the prediction and the derivatives are valid only for first and second variations of the control, so the 

control is constrained to limited variations. 

The control correction will be performed by solving the problem: 

Mm

Mm

Mb Dt

 k  b  a 

fe

































000

0

0

),(

0

0

)(max)(or  min

 
                                                    (14) 

  

a and b are the derivatives of the range and e and f are the derivatives of the path angle at 120km.   is the range 

correction to stay in the authorized fall-down area, k is a proportionality coefficient set to gradually correct the 

impact range . DM is the maximum correction allowed on during the time span. We also impose bounds on 
0  

and    to limit the control variations.  

The problem will be a minimization problem if 120 is near its maximum allowed; a maximization problem if 120 is 

near its minimum allowed. The problem (14) is solved explicitly at each guidance call by a deterministic algorithm. 

If no solution of this problem exists, a maximal value of   is recomputed to comply with the bounds. 

 and0  are determined by the condition of orbital plane conservation at tb:     )0,0().,.(  btVbtX


. 

4. TEST CASE 

The test case considered for the study is the VEGA Launcher and its reference mission (polar earth orbit, (PEO 

mission, see reference [R9])). Vega is a launch vehicle comprising three stages with solid rocket motors: the P80 first 

stage, the Zefiro-Z23 second stage, the Zefiro-Z9 third stage 

The fourth stage, AVUM, ensures mission versatility, injecting the payload(s) into final orbit generally through a 

transfer orbit. The baseline performance set for Vega is the PEO mission which consists to inject from Kourou 1500. 

kg into a circular polar orbit at 700 km altitude, inclined 90° to the equator. 

 

Launcher data 

Table 1 Launcher data 

 

  Stages 
Inert mass 

(kg) 

Propellant mass 

(kg) 

Vacuum Isp 

(s) 

tc 

(s) 

P80 7431 88365 280 107 
Z23 1845 23906 289 72 

Z9 1423 10115 293 120 

Avum 662 550 315.5 694 
Fairing 560    

Payload 1500    

 

The Launcher data come from various open sources. They have been extracted mainly from the Vega User’s manual 

of Arianespace (reference [R8]). Some data (Z9 inert mass, fairing mass and Avum inert mass) have been updated by 

more recent documents (references [R9], [R6], [R10]). The inter-stages masses are included in the stages inert mass 

in the table above. The Launcher aerodynamic data come from document reference [R12] (aerodynamic drag 

coefficient for Vega). The SRMs thrust laws considered here are those presented in reference [R7]. These data may 

differ from official reference data, but we think that they are sufficient to test our method. 
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Figure 7 Nominal trajectory of VEGA (PEO mission) 

 

Mission scenario for the PEO mission 

During the flight of the two first stages (P80, Z23) in atmosphere, the angle of attack is kept near zero. After Z9-Z23 

separation and a short ballistic phase, the 3
rd

 stage is ignited and the fairing is jettisoned when the conventional heat 

flux comes below a certain threshold (1135 w/m
2
). After fairing jettisoning, the launcher attitude is free and the 

launcher guidance aimed a transfer orbit reached at the end of the first boost of Avum. Then the final stage (Avum) 

follows a ballistic trajectory before a re-ignition and a 2
nd

 boost to circularise the orbit. 

For the test case, the parameters of the transfer orbit resulting of a pre-optimisation are: 

 

Tableau 2: Transfer orbit parameters 

 

Apogee 

Altitude 

Perigee 

Altitude 
Inclination 

Argument 

of perigee 

Ascending 

node 

692.5 km 163  km 89.95 d° 20.5 d° 0.83° 

 

For the VEGA reference mission (PEO orbit) and in nominal conditions (without dispersions), considering a drag 

coefficient of 6.510
-3 

(
2
), the Z9 stage falls in the Arctic Ocean a thousand km beyond Greenland. The ballistic 

impact is located forward at approximately 1200 km from the impact point with drag (see figure 7). 

 

Note: According to our model assumptions (launcher data, flight sequential, guidance), we cannot certify that our 

results are representative of a real trajectory of the  VEGA Launcher. 

4.1. The Monte-Carlo computation process 

To compute the possible Z9 impact zone, we use a Monte-Carlo process based on a quasi-random process more 

accurate than the standard monte-carlo method (Sobol quasi-random generator (reference [R1]). We suppose that the 

dispersions which affect the Launcher follow a Gaussian Law. The following table lists the dispersed parameters and 

their standard deviations 
3
: 

 

Table 3: Monte-Carlo parameters 

 

Propulsive dispersions 

Stage Flow rate Std. Dev. Isp Std. Dev. 

P80
 

2 % 0.5% 

Z23
 

2% 0.5% 

Z9 1% 0.5% 

Avum (1
st
 boost)

 
2.5% 0.3% 

Avum (2
nd

 boost)
 

2.5% 0.3% 

 

                                                           
2
 See references [R2] and [R5] for estimation of the drag coefficient of stage debris 

3
 The standard deviations of the propulsive laws are estimated from the documents in references ([R7] and [R13]) 

Z9 ballistic 

  impact 

Z9 impact Z9 re-entry trajectory 

1
st

 boost Avum 

boost Z9 

Transfer Orbit 
 Transfer Orbit 
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Other dispersions 

Drag coefficient (Std. Dev.) Dispersion profile wrt mach 

Atmospheric density Dispersion profile wrt altitude 

 

We consider a dispersed atmosphere (model GRAM10 reference [R11]) for which a standard deviation of the 

atmospheric density is given wrt altitude.  

 
Figure 8:  Density perturbation model (reference [R11]) 

 

4.2. Debris footprint model 

This study is not aimed at modelling precisely the Z9 debris re-entry. We have chosen to simplify the computations 

by integrating the re-entry trajectory taking into account the drag force  with a constant drag coefficient (SCx/m) and 

the earth J2 effect (see references [R2] [R5])  for drag coefficient values of the pieces of  a space vehicle after  

breakup). No lift was modelled nor any breakup phenomenon.  

The correction strategy is based on analytic derivatives of the ballistic impact wrt control parameters. Obviously, the 

real impact location differs from the ballistic impact. Monte-Carlo results will show that for a given test case, there is 

a more or less constant offset between the two, the path angle and relative velocity at 120km being the most influent 

parameters. A “virtual” ballistic target has been accordingly assigned to the range correction algorithm. 

 

 
        Figure 9 : Debris footprint modelling  

5. Computation results 

To obtain a sufficiently accurate statistical fall down zone, 100 000 Monte-Carlo runs have been computed. 

5.1.  Monte Carlo results without impact control 

As a reference, we computed first a full Monte Carlo without activating the control of the Z9 impact zone. The 

Launcher thrust attitude is computed with the guidance algorithm defined in § 3.3. For all the simulations, the final 

orbit has been reached accurately without any propellant depletion (accuracy better than 0.5 km for the semi-major 

axis (a), less than 0.004° for i and ), thus demonstrating the efficiency and the robustness of the guidance 

algorithm. 

 

Results 

Ballistic trajectory 

Debris field 

Re-entry 

trajectories  

Forward 

impact 
Backward 

impact 

120km 
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Table 1: impact zone characteristics and propellant consumption (nominal guidance without impact control) 

Parameter Value 

Max. Undershoot distance 
4 

-2458 km 

Undershoot distance at probability 10
-3

 
 

-2017 km 

Undershoot distance at probability 10
-4

 
 

-2300 km 

Max Overshoot Distance 
5
 4619 km 

Overshoot distance at probability 10
-3

  2985 km 

Overshoot distance at probability 10
-4

  3641 km 

 

Statistical Avum propellant  

consumption (probability 10
-2

) 

470.5 kg 
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Figure 10 Avum propellant consumption (Histogram) 

 

The figure 10 shows the distribution of Avum propellant consumption. The statistical propellant consumption is 

moderate and leaves enough propellant reserve to compensate the dispersions and to proceed to Avum de-orbit. 
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Figure 11 Distance impact wrt nominal (Histogram) 

 

                                                           
4
 Undershoot distance : distance from nominal impact, the impact is behind the nominal impact (negative value by 

convention) 
5
 Overshoot distance : distance from nominal impact, the impact is beyond the nominal impact (positive value) 
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The figure 11 shows the impact distribution of the Z9 stage. For this monte-carlo simulation (100 000 runs), the fall-

down zone stretches over 7100 km; the forward part of the distribution presents a very flat tail suggesting  possible 

important overshoot impact distances for low probability.  

 

 
Figure 12 Z9 statistical Z9 fall-down zone over the Arctic Ocean (100 000 runs) 

 

The figure 12 visualizes the statistical fall down zone, an important part of the fall down zone lies beyond the coasts. 

5.2.  Monte Carlo results with impact control 

The same full Monte Carlo simulation (100 000 runs) is performed now with impact control. The authorized Z9 fall-

down area is defined with respect to a maximum distance between the Z9 ballistic impact point which results from 

the simulation with dispersions and the ballistic impact point of the nominal trajectory (without dispersions). The 

maximum distance depends on the nature of the impact (undershoot, overshoot): 

Maximum undershoot ballistic impact point: 700 km 

Maximum overshoot ballistic impact point: 500 km  

 

Impact control strategy 

If the ballistic impact is outside the above limits, the nominal launcher guidance is interrupted and the impact control 

is activated. The range impact is corrected thanks to the algorithm defined at §3.6. According to the discussion at § 

3.6, to control both the propellant consumption of the upper stage and the atmospheric re-entry, the following 

strategy is applied (§ 3.6): 

- if 120 > -2°, 120 is minimized and the ballistic range impact corrected 

- if -4° < 120   -2°, the Z9 ballistic range impact is corrected only 

- if 120 < -4°, 120 is maximized and the ballistic range impact corrected 

Results 

 

For all the simulations, the final orbit has been reached accurately: the errors on the orbit parameters of the final orbit 

are less than 0.7 km for the semi-major axis, less than 0.005° for i and . 

 

Table 2: impact zone characteristics and propellant consumption with impact control 

Parameter Value 

Max. Undershoot distance
 

-690 km 

Undershoot distance at probability 10
-3

 
 

-553 km 

Undershoot distance at probability 10
-4

 
 

-608 km 

Max Overshoot Distance    867 km 

Overshoot distance at probability 10
-3

   651 km 

Overshoot distance at probability 10
-4

   740 km 

Statistical Avum propellant  

consumption (probability 10
-2

) 

477.8 kg 
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Figure 13 Avum propellant consumption with impact control 

 

The figure 13 shows the distribution of the Avum propellant consumption. The fuel consumption increases slightly 

(+7.3 kg at a probability of 0.01), the histogram shows a flatter distribution. 
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Figure 14 Distance impact distribution with impact control 

 

The negative distances in figure 14 are for undershoot impacts. We can check on the figure 14 that the impact control 

is effective: the length of the Z9 fall-down zone is now reduced to 1500 km. The ballistic impact zone was 

constrained to [-700 km, 500 km]. Taking to account the drag, the impact zone is found here to [-690 km, 828 km]. 

Because the method manages only the ballistic impact zone, a great part of this difference can be explained by a non 

constant deviation between the ballistic impact and the real impact with drag, and also by the error of the propulsive 

dispersions estimation leading to a threshold violation, especially for the extreme overshoot cases. The tail 

distribution is quite short for the overshoot or undershoot impact zones.  So, it can be expected than that the extreme 

impact points at very low probability lie at a reasonable distance of the nominal impact point. 

 

Figure 15 Z9 statistical fall-down zone with impact control (100 000 runs) 
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Figure 16 Flight path angle at re-entry with and without impact control 

On the figure above, we can see that the impact control strategy decreases the path angle at re-entry and generally 

shifts the values of the path angle to lowest values. 

Table 3: Probability comparison for low path angle at re-entry 

Probability [ 120  > -1.3°] 

Without impact control With impact control 

4% 0.7% 

6. Conclusion 

The ability of our method to limit the fall-down zone of a solid stage during the Launcher ascent is demonstrated. 

The solid dispersion estimator is also proven efficient and can have application for other space vehicle guidance. In 

addition, the impact control method increases only slightly the propellant consumption of the final stage in charge to 

deliver the payload while reducing significantly the fall-down zone and ensuring a direct re-entry by lowering the 

flight path angle at re-entry. Therefore the impact control method presented here does not penalize the Launcher 

performance (at least for the study case presented here).  

We can conclude also that the simplicity of the impact control method for solid stages coupled with a robust 

Launcher guidance allows envisaging an onboard application in real time. However, this is still a preliminary work 

and following issues need to be addressed: 

- Tests on others missions and launchers, 

- Global strategy accuracy and Launcher performance optimisation, 

- Quantification and effect of the dispersions of a solid motor at tail-off 
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