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Abstract 
Adequate modeling of unsteady aerodynamic characteristics is required for investigations of aircraft 
dynamics and stability analysis at high angles of attack. Recurrent neural networks of NARX type are 
applied in the paper. The efficiency of the approach is demonstrated with two examples, namely, delta 
wing and aircraft with canard surface. To improve accuracy the fact that models of unsteady 
aerodynamic characteristics are developed using various dynamic tests is taken into consideration and 
neural network training algorithm is proposed. The algorithm based on Bayesian regularization for the 
different-type initial data uses Gauss-Newton method to approximate Hessian matrix with modified 
Levenberg-Marquardt optimization algorithm to locate the minimum point. The algorithm is shown to 
improve the mathematical model accuracy. 
 
1. Introduction. 
 

Significant extension of the angles-of-attack range used in modern flight leads to necessity of more adequate 
modeling of aircraft unsteady aerodynamic characteristics. This problem is urgent for both maneuverable and 
commercial airplanes. The first ones use high-angle-of-attack range in the air fight, the latter ones use high-angle-of-
attack range during take-off and landing. In addition, according to EASA (European Aviation Safety Agency) a loss 
of control in flight became the main cause of the commercial airplane fatal accidents during the last decade [1]. That 
is why it is necessary to model the aerodynamics in the extended flight envelope to provide realistic pilot training in 
upset conditions and to study more thoroughly the aircraft dynamics in critical flight regimes [2, 3].  
Aircraft aerodynamics at high angles of attack is determined to a large degree by detached and vortical flows. The 
account for the effects associated with these processes is important for the correct description of aircraft dynamics. A 
breakdown of vortexes generated by the forebody and wing leading edge is the key physical effect for the 
maneuverable aircraft at high angles of attack. Dynamics of the vortex breakdown position while changing the angle 
of attack and sideslip angle cause nonlinear variation of the aerodynamic characteristics, stability and controllability 
characteristics. As concerns transport airplanes with high wing aspect ratio, the important role for the aerodynamics 
at high angles of attack is played by the dynamics of the wing flow separation. A complicated character of the 
aerodynamic interference upon the detached flow conditions is a significant source of nonlinearity of aerodynamic 
characteristics at high angles of attack for the full aircraft configuration. Particularly, interaction of the detached 
wing flow with the flow over horizontal tail affects significantly the stability and controllability characteristics. The 
flow detached from the vertical tail, and the vortices generated by the fuselage nose part and interacting with the tail 
make contribution to nonlinear behavior of aerodynamics upon further increase in the angle of attack. 
The unsteady effects are very important since aircraft usually do not use high angles of attack in the normal flight but 
go beyond the normal flight envelope in consequence of dynamic maneuvers, pilot’s mistakes, and wind gusts. The 
problem of modeling of unsteady aerodynamics at high angles of attack is directly connected with ensuring the flight 
safety. 
Development of computers and numerical techniques has recently caused significant progress in the direct numerical 
simulation (DNS) of aerodynamic loads using Navier-Stokes equations [4]. Nevertheless, at the present state of art 
the equations of fluid mechanics and aircraft motions cannot be solved simultaneously in the certain flight mechanics 
problems. Simulation of aircraft dynamics and control design problems require a large number of parametric studies 
that is possible only while using simple and real-time aerodynamic models. DNS cannot also be applied for semi-
realistic real-time simulation of the aircraft flight using pilot simulators. 
For solution of the important flight dynamics problems, the simplified mathematical models of the unsteady 
aerodynamics that consider complex effects of the detached and vortical flows allowing real-time simulation are 
required. These models should be capable of describing non-linear phenomena important for the flight dynamics in 
the wide range of kinematic parameters. In practice, such models are developed using experimental data obtained 
from a set of wind-tunnel dynamic tests with various test rigs.  
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At the present moment, the representation of the aerodynamic coefficients using aerodynamic derivatives is widely 
used for flight dynamics engineering applications [5]. For the small angles of attack and sideslip angles, the 
aerodynamic forces and moments are supposed to be represented as the linear terms of Taylor series expansion of the 
aerodynamic coefficients in the motion parameters  

0 0( ) ( ) ( / ) ( / )L L L Lq LC C C C qc V C c V
α αα α α α= + − + + 

                                          (1) 
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 . 
The most prevailing way to obtain expansion coefficients is the dynamic tests in wind-tunnels. This method can be 
successfully applied in the range of linear variation of aerodynamic characteristics, i.e., for the flows without 
separation. Application of this method in the range of non-linear variation of the aerodynamic characteristics can 
lead to significant errors. 
The most general technique of modeling of unsteady aerodynamic characteristics is to use the nonlinear indicial 
functions [6]. To develop the model based on the nonlinear indicial functions the unsteady aerodynamic data are 
used. Nevertheless, it requires a set of serious simplifications when applied to real experimental data, so that final 
mathematical models are formulated in a simple form of first-order linear differential equations. 
The phenomenological approach [7] takes into account delays of separation and recovery of flow without separation. 
The aerodynamic loads are separated into linear and nonlinear components while using this approach. Ordinary 
differential equations are used for modeling of the nonlinear components of the aerodynamic characteristics. The 
equations contain characteristic time constants corresponding to the times of flow separation development. The 
dynamic wind-tunnel tests are also used to identify these constants. This approach enables the dependence of 
aerodynamic characteristics on frequency and amplitude of oscillations, and aerodynamic hysteresis to be modeled 
quite precisely. Unfortunately, application of phenomenological approach in an arbitrary case can cause a series of 
difficulties associated with selection of nonlinear components of unsteady aerodynamic characteristics. 
Neural networks have been used recently for identification and modeling of nonlinear aerodynamics in a number of 
papers [8-14]. Such an active introduction of neural networks is mainly connected with their universal approximation 
properties [15], which enable the neural networks to be used for an arbitrary aircraft without significant simplifying 
assumptions. Peculiarities of solving real-world problems cause necessity of more in-depth study of neural-network 
techniques and their adaptation for the problems of unsteady aerodynamic modeling. 
An approach for neural-network modeling of unsteady aerodynamic characteristics in the wide angle-of-attack range 
using wind-tunnel dynamic tests is presented in the paper. 

 
2. Description of neural network configuration and learning techniques. 
 

2.1. Neural network configuration. 
 

Recurrent neural networks are used recently for modeling of dynamic systems; therefore, such type of neural 
networks is preferable for flight dynamics problems. Thanks to their properties they can be used for any type of 
aircraft motion. The recurrent neural networks were used for modeling of unsteady aerodynamic coefficients of a 
delta wing aircraft at high angles of attack in [13]. 
A recurrent neural network of NARX type (nonlinear autoregressive network with exogenous inputs) is used in the 
paper. Its configuration is shown in figure 1. For modeling variable y at the time t the state vector ( )x t  and a series 
of its former values ( 1), ( 2)... ( )inx t x t x t T− − −  are inputted into the neural network. The values of the modeling 
variable ( 1), ( 2)... ( )outy t y t y t T− − −  calculated by the neural network earlier are also used. 
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Figure 1: Neural network configuration 

A neural network can be considered as a directed graph with neurons placed in it nodes. Neuron is an elementary 
calculating unit. The neurons of the first layer do not execute calculations but distribute input signals between 
neurons of the hidden layer. After a set of signals from the input layer have been obtained each neuron of the hidden 
layer multiplies each signal by its own weight factor ikω  corresponding to the signal transfer connection, sums 

derived products, and adds bias kb . The result undergoes nonlinear transformation through the neuron activation 

function kf . The operational diagram of hidden layer neuron is presented in figure 2. The transformation of input 
signal ( , ),{ ( ), ( 1)... ( ), ( 1)... ( )}in outs x y x x t x t x t T y y t y t T= = − − = − −  into the output signal kϕ  can be presented in 
the following form 

( )k k xk yk kf w x w y bϕ = + + .                                                                    (1) 

The resulting neural-network model can be presented in the form 

( ) ( ( ), ( 1),..., ( ), ( 1),..., ( ))in outy tФ x t x t x t T y t y t T= − − − − ,                                               (2) 

where Ф  is the function of neural network operation. 
 

 
 

Figure 2: Artificial neuron 

 
2.2 Neural network training 

 
The connection weights ikω  and biases kb  are adjusted during neural network training when the examples of 
learning set are presented. The weight coefficients are adjusted through minimization of the difference between 
neural network operation results yi and target data ai for each example from the learning set 1..i N=  

2

1

1  ( ) ,
2

N

D i i
i

E y a
=

= −∑                                                          (3) 
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One of the problems during neural network training is called overfitting. The error on the training set is driven to a 
very small value, but when new data is presented to the network the error is large. The network has memorized the 
training examples, but it has not learned to generalize to new situations. A part of the whole initial data can be used 
for model testing. The test set error should be gained to be as small as possible and not to be significantly higher that 
the training set error. When this condition is valid the neural network is considered to have good generalization 
performance.  
Regularization is one of the techniques for improving generalization. According to this technique, a term penalizing 
the neural network for increase of weights is added in the objective function besides the error measure  DE (3). 
Particularly, the sum of the squares of weights can be used. 

2

1

1  
2

K

W j
j

E ω
=

= ∑ ,                                                                              (4) 

where K is a number of neural network weights. The objective function takes the form 
F = βED + αEW,                                                                               (5) 

where α and β are objective function parameters. To define the objective function parameters, Bayes’ rule can be 
used [16], particularly, Gauss-Newton approximation to Bayesian regularization (GNBR) algorithm was used in [17] 
to train neural networks. 
GNBR algorithm is the effective tool for training neural networks, but it supposes that initial data are of a single 
type. The unsteady aerodynamic models for flight dynamics problems are developed using different dynamic rigs, in 
the various ranges of kinematic parameters, for various types of motion, and with different accuracies. More accurate 
models can be obtained while considering that data are of different types. In the present paper, the GNBR algorithm 
was modified for the case of different-type data and Bayesian Regularization to the training of neural networks 
considering Different-type Data (BRDD) was proposed. 
 
2.3 Bayesian Regularization to the training of neural networks considering Different-type Data. 

 
Let us suppose that experimental data to be approximated are obtained in n different experiments 

( ) ( ) ( )1 1 2 2 n nx , a , x , a , ..., x , a , where ( )1
...

Nii i ix x=x  is the vector of values of the controlled phenomenon 

parameter, obtained in i-th experiment, ( )1
...

Nii i ia a=a  is the vector of values of the observed variable obtained in 

i-th experiment. The errors in each experiment are supposed to have normal distribution with zero statistical 
expectation but with different standard deviations iσ . 
The problem is to identify function y that should describe the obtained experimental data 

( )
( )
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( ) , 1..
m m mn n nn n n n na y x m Nν= + =

 

 

where { }, 1...
m mi ii i i i iD x a m N= =  is the data set obtained at the one-type experiment, y is the approximating function. 

Using Bayes’ rule the following objective function can be obtained instead of (5)  
1 1
2 2

T TF α= w w + e Be ,       (7) 

where ( )1 2... T
i Kω ω ω=w  is the vector of weights, ( )1 2... T

i Ne e e=e  is the vector of errors, ( )( )j j je y x a= −  

is the approximation error of i-th data pair, B is the matrix N×N; the objective function parameters iβ  are placed on 
the main diagonal of it, the other elements of this matrix are equal to zero. 



MODELING OF UNSTEADY AERODYNAMIC CHARACTERISTICS OF AIRCRAFT AT 
HIGH ANGLES OF ATTACK USING NEURAL NETWORKS 

 

5 
 

1

1

0 ... 0
0 0 ... 0

...
0 ... 0 0 ... 0

.                                                 (8)
0 ... 0 0 ... 0

...
0 0 0
0 0

i

i

n

n

β
β

β
β

β
β

 
 
 
 
 
 =  
 
 
 
  
 

B  

Using Bayes’ rule to determine the parameters of objective function F (7), the following expression can be obtained 

T

γα ≈
w w

, 

where 1Sp( )Kγ α −= − H  is a so-called effective number of parameters, K is the total number of parameters in the 
network [17], 2F= ∇H  is the Hessian matrix of the objective function. 
The following expressions are obtained for iβ : 

-1Sp
d d

i
i

T

i i

N
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β

β β
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where iN  is the number of patterns of the i-th training subset. 
Hereby, the proposed approach enables the parameters of the objective function to be adjusted subject to the error of 
approximation on corresponding subset. 
The algorithm for practical implementation of the training technique was developed in the paper. To obtain values of 
the objective function parameters it is required to calculate Hessian matrix in the minimum point of objective 
function F. Gauss-Newton method is proposed to approximate Hessian matrix with modified Levenberg-Marquardt 
optimization algorithm used to locate the minimum point  

( )( ) ( )1

1 1
T T

i i iα µ α
−

− −+w = w - J BJ + E J Be + w , 
where J is the Jacoby matrix. The proposed modification improves the algorithm convergence in the vicinity of the 
minimum point. 
 

3. Results  
 
3.1. Delta wing 
 
First, let us consider the neural network modeling of unsteady aerodynamic characteristics of a delta wing. The 
dynamics of vortex burst position above the upper wing surface is known to be the main physical effect determining 
unsteady flow of the delta wing at high angles of attack. The experimental results [18] obtained for the delta wing 
with aspect ratio  = 1.5λ , mean aerodynamic chord = 0.725c  m, wing sweep  70χ ≈ °  are used in the present 
paper. The tests were carried out in wind tunnel T-103 of TsAGI with flow velocity = 25 m/sV∞ . Dynamic tests with 
forced pitch oscillations with small amplitude of 3° were carried out for frequencies of 0.5, 1 and 1.4 Hz. Angle-of-
attack range was from 0° to 60°. Large-amplitude forced oscillations were also implemented. The amplitudes were 
from 15º to 24º, frequencies were from 0,2 to 1,2 Hz. 
For the delta wing, the unsteady Lift force coefficient LC  model was developed. The neural network of NARX type 
with one hidden layer was used. The proposed model of ( )LC t  depends on the angle of attack ( )tα , pitch rate ( )q t  
at the time t, prehistory of motion ( )int Tα − , ( )inq t T− . In addition, the neural network uses the results of modeling 
on the previous time period ( )L outC t T− . Initial values of the Lift force coefficient are input in the model. The only 
GNBR algorithm was used for training of this model. 
Let us consider the results of modeling of unsteady Lift force coefficient obtained at forced pitch oscillations. Figure 
3 shows the results of modeling in comparison with large amplitude experiments. The given examples are referred to 
the test subset. The unsteady derivatives LC α  and L q LC C α+   were also modeled and compared with the 
experimental results, which are given in figure 4. Figures 3 and 4 show the adequate ability of neural networks to 
describe the results of dynamic experiments while developing unsteady aerodynamic models. Nevertheless, the 
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application of BRDD technique enables more accurate results to be obtained. This will be demonstrated in the 
following section. 

 
Figure 3: NARX simulation of lift force coefficient LC  compared to large amplitude oscillation measurements - 

Delta wing 

 
Figure 4: NARX simulation of LC  dynamic derivatives obtained during small amplitude pitch oscillations compared 

to oscillation measurements - Delta wing 
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3.2. TCR model 
Let us consider the neural network modeling of unsteady aerodynamic characteristics of a passenger aircraft 
designed for the transonic cruise.  
The experimental study of a passenger aircraft designed for the transonic cruise (TCR) was carried out during the 
participation of TsAGI in European Project SimSAC of the Sixth Framework Program. The aerodynamic 
configuration is characterized with high-sweep wing and canard surface. Interaction of the flow detached from the 
canard surface with the wing flow is the crucial physical effect at high angles of attack for this model. The TCR wing 
span is = 0.725ab , mean aerodynamic chord is = 0.2943c  m. The experiments were carried out in wind tunnel T-
103 of TsAGI with flow velocity = 40 m/sV∞ . Dynamic tests with forced pitch oscillations with small amplitude of 
3° were carried out for frequencies of 0.5, 1 and 1.5 Hz. Angle-of-attack range was from -10° to 40°. Large 
amplitudes were equal to 10º and 20º, frequencies were equal to 0,5, 1, and 1,5 Hz. The general view of the model 
used in the experiment is given in figure 5. More detailed discussion of the experiment with the TCR model is given 
in [19]. 

 
Figure 5: General view of TCR model 

For TCR model the neural, the network technique was applied for unsteady pitch moment coefficient mC . 
The same NARX configuration of neural network with one hidden layer was used. The dependencies of pitch 
moment coefficient on the angle of attack during oscillations are very complex for such aerodynamic configuration, 
so the application of the BRDD is desirable to increase the model accuracy. Large amplitude tests and aerodynamic 
derivatives are correspondingly modeled in figures 6 and 7. Figure 6 shows the hysteresis loops observed in the 
experiments that are modeled quite precisely. Small amplitude test results, which are used to determine aerodynamic 
derivatives, are modeled and shown in figure 7. The dependencies of derivatives on oscillation frequency in the 
angle-of-attack range corresponding to the canard surface flow separation are seen to be modeled by the neural 
network with acceptable accuracy level. 

 
Figure 6: NARX simulation of pitch moment coefficient mC  compared to large amplitude oscillation 

measurements – TCR model 
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Figure 7: NARX simulation of mC  dynamic derivatives obtained during small amplitude pitch oscillations compared 

to oscillation measurements - TCR model 
Let us carry out an analysis of the obtained results to determine whether the BRDD algorithm helps to improve 
accuracy of models derived from different type data. For this purpose, the neural network models of TCR pitch 
moment coefficient obtained while using GNBR and BRDD training algorithms should be compared. 

A numerical comparison of the neural network is implemented via calculating the errors obtained for models of pitch 
moment coefficient mC  and derivative m q mC C α+   separately for train and test subsets. The error measure is the 

mean square error divided by the entire range of the measured value y∆  

exp sim 2
j

1

1 ( )
1

iN

j
i j

i

y y
N

err
y

=

−
−

=
∆

∑
 

Tables 1 and 2 give the errors of neural network models. 
Table 1: Model error for GNBR algorithm 

Variable Train subset, % Test subset, % 
mC , (large amplitudes) 5.59 8.3 

m q mC C α+   7.09 8.58 

 
Table 2: Model error for BRDD algorithm 

Variable Train subset, % Test subset, % 
mC , (large amplitudes) 4.53 6.34 

m q mC C α+   5.65 5.77 

One can see a significant accuracy improvement of models. The errors for mC  decreased by 23% and 31% for the 
train and test subsets, respectively. The errors for m q mC C α+   decreased by 25% and 49% for train and test subsets, 
respectively. 
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Figures 8 and 9 show the scatterograms for mC  and m q mC C α+   obtained on the test subsets. Less scattering is seen 
to be obtained using the developed technique. 

 

 
Figure 8. Scatterogram for test data - mC  

 
Рисунок 9. Scatterogram for test data - m q mC C α+   

4. Conclusions 

Mathematical modeling of unsteady aerodynamic characteristics at high angles of attack is an urgent problem for 
improvement of aircraft safety. Simplified and real-time unsteady aerodynamic models that are able to describe a 
series of phenomena associated with detached and vortical flows are required for an adequate modeling of aircraft 
flight dynamics.  
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The recurrent neural networks of NARX type, which were usually applied in dynamic system modeling, were used in 
the paper for unsteady aerodynamics modeling. Two configurations were considered, namely, delta wing and 
passenger aircraft with canard surface, the flows over models are characterized with different physical effects. The 
neural networks were shown to be an effective tool for modeling of unsteady aerodynamic characteristics in a wide 
range of kinematic parameters regardless of the nature of the observed nonlinear phenomena. This simplifies 
significantly modeling in case of arbitrary aircraft.  
To improve accuracy of neural network models of unsteady aerodynamics the fact that different dynamic tests were 
used while developing models was taken into account. The effective training algorithm based on Bayesian 
regularization with the initial data of different type was suggested. The algorithm uses Gauss-Newton method to 
approximate Hessian matrix with modified Levenberg-Marquardt optimization algorithm to locate the minimum 
point. The paper shows that the proposed technique enables the model error to be decreased on both the train and test 
subsets. 
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