
5TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) 

Copyright  2013 by Stefan BOGOS. Published by the EUCASS association with permission. 

Dynamic stability identification using a scale mock-up of an 

advanced aircraft configuration 
 

 

 

Stefan BOGOS*  

*INCAS-National Institute for Aerospace Research “Elie Carafoli” 

B-dul Iuliu Maniu 220, Bucharest 061126, Romania, bogos@incas.ro  

 

 
Abstract 
This paper deals with the stability of a real aircraft using the results from a flying scale mock-up. 

Similarity coherent criteria are proposed for the dimensional, inertial and mass characteristics between 

the two models. The flight condition preserves the lift coefficient. The same values for the damping 

factors are in "Short period" and "Dutch roll" modes. Factored values with a scale constant are 

obtained for the time characteristics in "Short period ", "Dutch roll", “Roll” and “Spiral” modes. The 

damping ratio in "Phugoid mode" seems to be proportional to the aerodynamic drag ratio of the two 

models. 

 

1. Introduction 

The aircraft stability analysis requests as input data, the aircraft mass, inertia and the detailed aerodynamic 

coefficients and derivatives. The classical assumptions for the general equations of the unsteady aircraft motion 

analysis imply: uncoupling “longitudinal” and “lateral”, small perturbation and linear equations of the motion. 

Sometimes this theoretical hypothesis, together with an uncertainty on the input data, would produce unsatisfactory 

results for the longitudinal and lateral-directional flying qualities.  

Airplanes must be designed to satisfy the Level 1 for Flying Quality requirements with all systems in their normal 

operating state. If, for an already built aircraft, after the first flight test program, an unsatisfactory stability has been 

recorded, important and expensive changes have to be done. The following example shows that British certification 

requirements relating to the Dutch roll damping in engine-out go-around, forced Boeing to increase the height of the 

tail fin on all 707 variants, as well as to add a ventral fin. A study about the effects of these modifications was 

detailed in [1]. 

The airplane model used in this study is an advanced aircraft configuration, developed for low drag and noise which 

has been proposed in the international European research program: HELENA-Highly Environmental Low Emission 

Next generation regional Aircraft. It has specific features: forward swept wings with winglets, twin vertical tails and 

Contra Rotating Open Rotors that are shielded by horizontal tail, fig.1. 

This paper aims to achieve a study for increasing the quality of the results concerning the stability of this advanced 

aircraft configuration, using the results from a flying mock-up. The scale ratio of the scale mock-up related to the full 

aircraft was 1/20. The content of this report completes the topics from [2] and [3] and details how to translate the 

recorded stability parameters from a flying mock-up to the real aircraft. 

2. The aerodynamic model 

The following is a short presentation about a specific practical method regarding the evaluation of the pressure 

distribution on the outside surface of the aircraft. It is assumed that there is a general steady subsonic motion 

composed by a translation with V


 velocity and an aircraft rotation with angular velocity ),,( rqp


. Also, a 

potential flow without viscous effects is assumed and there are accepted the “aerodynamics” approaches of the 

geometry according to “small perturbations”. The potential theory is used to get the solution. The three-dimensional 

boundary value problem is solved using the “boundary element method”, [7]. 

The "boundary element" method is a specific method, developed especially for differential equations of Laplace or 

Poisson type. The way to solve the potential equation is using singularities of the source type, vortices or doublets in 

http://en.wikipedia.org/wiki/Vertical_stabilizer
http://en.wikipedia.org/wiki/Empennage#Fins
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order to form the integral equation that describes the potential. The figure 1 is a representation of the aerodynamic 

mesh for HELENA aircraft model, “Full scale” that was used in this evaluation. 

 

 
Fig. 1 HELENA: CATIA Model and Aerodynamic mesh, “Full Aircraft” 

 

 

The forward swept wing, (FSW), is specific to the proposed configuration. Figure 2 shows a generic comparative 

analysis of the laminar flow surface (blue shaded area) on the forward swept wing and backward swept wing, 

(BSW), in flight cruise regime. Note that the laminar shaded area for forward swept wing is greater than the laminar 

shaded area for backward swept wing that has the effect of reducing the aerodynamic drag for FSW. 

 

 

 
 

Fig.2 Natural laminar flow on swept wings, ref [11] 

 

By using the Green theorem, we obtain that the potential   in a point P, outside to the S surface of the aircraft, is 

given by the expression (1): 
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The boundary conditions described through equations (2), applied to the disturbance potential   are as follows: 
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Let  q  be the intensity of a sources panel in a point q on the surface of the non-lifting body, or on the skeleton of 

the wing, and  k  the intensity of the circulation of a horseshoe vortex in the point k on the medium surface. 

Conditions (2) and (1), applied to the specific singularities will give equation (3): 
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In equation (3),  pn


 is the "outside normal" vector to the surface S in the point p, with lk identifying the semi-

infinite horseshoe vortex. It is a personal contribution that the direction of every free vortex is the same with the local 

undisturbed velocity, i
V


, composed from translation and rotation, presented in (4): 

 

ii rVV


         (4) 

 

where ir


 is the local position vector. 

The numerical evaluation of the second kind Fredholm integral equation (3) relies on the approximation of integrals 

as follows (5): 
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The following notations (6) present the induced velocity by a unitary sources panel from point j or by a vortex 

horseshoe from point k , in a collocation point i  from the aircraft surface. 
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The relations (5) and (6) will give a linear algebraic equations system for the unknown j  and k , that are written 

formal in (7) as “ jx ”. 

A robust iterative (Conjugate Gradient) solver is used for the large full matrix from (7). The results of the numerical 

simulations lead to the pressure coefficients and finally, by integration, to the aerodynamic coefficients and 

derivatives. This method was implemented “in-house” in a practical FORTRAN software code. 

3. Results regarding the aerodynamic coefficients and derivatives 

The aerodynamic coefficients and derivatives were evaluated with a CFD aerodynamic methodology presented in the 

previous chapter 2. Some numerical results were validated through those provided by a software code, Advanced 

Aircraft Analysis 3.3, ref [12]. 

The longitudinal aerodynamic coefficients and derivatives are presented in the following relations (8). There were 

used classical notations described in references [4] and [10]. 

Subscripts “F” or “S” are related to the “Full” or “Scale” models, respectively. 
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The aircraft HELENA has an unconventional wing and horizontal/vertical tail arrangement. This design is not 

suitable for lateral derivatives evaluation through classical analytical methods. Therefore, the nonlinear CFD 

aerodynamic model, presented in chapter 2, was used to assess the lateral-directional aerodynamic properties. 

The lateral aerodynamic derivatives are given in relations (9) and summary displayed in figure 3. 
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Fig.3 Rolling and Yawing derivatives versus lift coefficient CL 

 

The relations (9) pointed out the variation of the lateral derivatives with the lift coefficient LC . This type of 

dependence is due to the interference between the wings, rear fuselage and the vertical tail and it is detailed in [4], 

[8], [9] and [10].  

 

4. Aircraft Longitudinal and Lateral-Directional motion analysis 

The present analysis uses the dimensional small disturbance equations system for the longitudinal and lateral 

directional motion, [5], [6], given through the linearization of the general motion equations. It was assumed that the 

motion of the airplane consists of small deviations from a reference steady symmetrical flight. The controls elevator, 

ailerons and rudder are kept in the fixed positions. 

The longitudinal and lateral-directional dynamic system for motion analysis is formally written in (10). 
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Axx           (10) 

 

Hence x  is the state vector and A  is the system matrix. The state vectors for the longitudinal and lateral system 

are:  
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T
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and 

x   motionlateralforrp
T

 ,      (12) 

 

The A  matrices from the differential system (10) are given in (13) for the longitudinal motion and in (14) for the 

lateral motion, respectively. These representations are based on [6] and are related to the aircraft body axis. 

The state matrix for the longitudinal motion is (13): 
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The detailed form of the dimensional longitudinal stability derivatives from (13) is a classical representation from [6] 

that uses the longitudinal aerodynamic coefficients and derivatives (8). 

The roots of the characteristic equation 0 AI gave the eigenvalues SP2,1 and PH4,3 . The eigenvalues 

SP2,1 correspond to the short-period and PH4,3 to the phugoid modes. 

The state matrix for the lateral-directional motion is (14): 
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The form of the lateral stability derivatives from (14) is based on the representation from [6] and uses the lateral 

aerodynamic derivatives (9). Usually, the roots of the lateral characteristic equation 0 AI  give the 

eigenvalues: a conjugate complex pair D2,1  and two real roots R3  and S4 . The complex eigenvalues D2,1  

correspond to the Dutch roll mode, a damped oscillatory motion with low frequency. The real root R3 representing 

a fast convergent motion is the Roll mode and S4  is the Spiral mode that may be convergent or slightly divergent.  

If 2,1 is a pair of conjugate complex eigenvalues with the algebraic representation:  in 2,1 , the relation (15) 

will provide the damping ratio   and the undamped natural circular frequency n  as follows: 
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The aircraft flying qualities are evaluated using the following time characteristics (16):  
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5. Similarity criteria and aerodynamic equivalence: Full and Scale 

It can be seen that the coefficients from the longitudinal and lateral state matrices A  presented in (13) and (14) 

depends on the aircraft dimensions, inertial properties and the stability derivatives. Also the initial conditions imply a 

definition for aircraft velocity, V . Similarity coherent criteria are proposed for the dimensional and inertial 

characteristics between the real aircraft and the scale flying mock-up model. It is assumed that the linear scale factor 

between the real aircraft and the proposed mock-up is SF  = 20. The table 1 presents a comparison between “Full 

aircraft” (F) and “Scale mock-up” (S) according to the dimensions and inertial properties. 

 

Table 1. Similarity criteria between “Full Aircraft” and “Scale flying Mock-up” 

 

Criteria 
(Full)F 

Aircraft 

(Scale)S 

Mock-up 

Similarity 

Ratio: Scale/Full 

Similarity 

( 20SF ) 

Linear (e.g. span ) 26 m 1.3 m SF/1  1/20 

Area (e.g. wing) 70 m
2 

0.175 m
2 2/1 SF  1/400 

Volume (fuselage) 179 m
3 

0.0224 m
3 3/1 SF  1/8000 

Mass (MTOW) 32000 kg 4 kg 3/1 SF  1/8000 

Moment of inertia: Ix 336699 kgm
2 

0.105 kgm
2
 5/1 SF  1/3200000 

Moment of inertia: Iy 987929 kgm
2
 0.309 kgm

2
 5/1 SF  

1/3200000 

Moment of inertia: Iz 1236535 kgm
2
 0.386 kgm

2
 5/1 SF  

1/3200000 

Moment of inertia: Ixz 14789 kgm
2
 0.0046 kgm

2
 5/1 SF  

1/3200000 

Controls deflection The same 1 1 

 

The similarity criteria for the inertia properties would be resolved with a specific mass distribution inside the model, 

assuming also the similarity for the weight. The figure 4 shows the HELNA 1/20 scale aircraft, that was developed at 

INCAS as a flying Radio Control mock-up, in a Wind Tunnel Testing program. 

 

 
 

Fig 4. HELENA 1/20 scale flying mock-up in Wind Tunnel testing program 
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The dimensional stability derivatives from (13) and (14) are dependent by the lift coefficient LC  and the flight speed 

conditions, due to the representation of the dimensionless aerodynamic coefficients and derivatives from (8) and (9). 

For a coherent comparative analysis it is proposed that all the aerodynamic derivatives, longitudinal and lateral, 

appropriate to the Full aircraft and Scale flying mock-up, to be the same. This assumption implies that the lift 

coefficient for Full model
FLC  is equal to the lift coefficient for Scale model 

SLC  , see (17): 

 

SLFL CC                   (17) 

 

The following relations (18), detailing the form of the lift coefficients 
FLC  and 

SLC , are: 
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Similarity criteria from table (1) and relation (18), will give, for Scale flying mock-up flight speed, SV  the form (19): 

 

FS V
SF

V 
1

        (19) 

 

where SF is the linear scale factor between Full aircraft and Scale mock-up. 

The scale model has flow characteristics specific to its Reynolds number. Reynolds effects are of a great importance 

related to the drag properties of the scaled model. The flow, for real aircraft is at a very large Reynolds number that 

implies low drag properties and the flow for the scale mock-up is at low Reynolds, with penalty for drag.  

This will have an effect on the longitudinal stability, especially on the Phugoid characteristics. Reynolds effects are 

of the second importance related to the lateral stability. 

Table 2 shows the main data related to the “aerodynamic equivalence” between the flight conditions for “Full 

aircraft” and “Scale mock-up”. 

 

Table 2. Aerodynamic/flight conditions equivalence for “Full aircraft” and “Scale mock-up” 

 

Flight conditions and 

aerodynamic coefficients 

(Full)F 

aircraft 

(Scale)S 

mock-up 

Similarity 

Ratio: Scale/Full 

Speed (m/s) 138 30.8 SF/1  

Mean aerodynamic chord 3.11 0.155 SF/1

 Re 29.4 10
6
 329000 2/3)/(1 SF

 
Lift Coefficient LC  0.388 0.388 1 

Drag Coefficient 0DC  0.0282 0.0564 2, for this case 

Lateral aerodynamic derivatives (8) The same 1 

Lateral rotary derivatives (9) The same 1 

6. Longitudinal modes, “Full aircraft” and “Scale mock-up” comparison 

The analysis for the longitudinal and lateral stability, appropriate to the “Full” aircraft and “Scale” mock-up, was 

made according to the similarity criteria detailed in Table 1 and the aerodynamic equivalence from Table 2. The 

steady straight flight level is assumed to be the reference condition for both airplanes models.  

A numerical integration method, Runke-Kutta of 4-th order from Mathcad was used to evaluate the solutions of the 

system (10), for Full aircraft and Scale mock-up. The eigenvalues and eigenvectors were processed. 

The longitudinal motion analysis has, as input data, the state matrices FA for Full aircraft, and SA  for Scale mock-up. 

These are given in (20).  
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(20) 

 

The eigenvalues F  for Full aircraft and S for Scale mock-up become (21): 

 

for Full aircraft for Scale mock-up 

(21) 

 

According to the real parts of the eigenvalues from (21), the longitudinal modes, Short period and Phugoid mode are 

seen to be stable. 

Due to the similarity criteria and the aerodynamic equivalence, relation (22) shows the dependence between the 

eigenvalues F  and S for the Short period mode as follows: 

 

20// SFSF orSF                                             (22) 

 

A numerical study related to the sensitivity of the phugoid damping factor phS )(  at the aerodynamic drag 

coefficient CD0S is presented in table 3. The range of the drag coefficient was “formal” assumed at 282…846 counts. 

 

Table 3. Phugoid damping sensitivity at the “Scale” aerodynamic drag 

 

 
 

The numerical results from Table 3 shows a quasi-linear dependency between the damping factor phS )(  and the 

aerodynamic drag coefficient CD0S  This is given in relation (23). 
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The value (thalf F)*ph  from table 3 was evaluated according to relation (24), that takes into account the similarity 

criteria and the aerodynamic equivalence. 
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Table 4 shows a comparison for the longitudinal characteristics times and damping ratio for the Full aircraft and 

Scale mock-up. 

 

Table 4. Characteristics Times-Longitudinal Modes 

 

M O D E 
(Scale)S 

mock-up 

(Full)F 

aircraft 

SIMILARITY 

( 20SF ) 

Short period mode 

(damped oscillation) 

  0.538 0.538 SF    

n  9.733 2.184 SFnSnF /   

T  0.763 3.41 SFTT SF   

halft  0.132 0.59 SFtt
SF halfhalf   

halfN  0.172 0.172 
SF halfhalf

NN   

Phugoid mode 

(damped oscillation) 

0DC  0.0564 0.0280 2/ 00 
FDSD CC  

  0.153 0.076 )(
0

0

S

F
SF

CD

CD
   

n  0.446 0.1 SFnSnF /   

T  14.26 63.21 SFTT SF   

halft  10.149 91.827 )(
0

0

F

S
halfShalfF

CD

CD
SFtt   

halfN  0.712 0.712 
SF halfhalf

NN   

 

The figures from Table 4 confirm the assumptions from relations (23) and (24) and have good qualitative and 

quantitative values.  

The transient behaviour of the state variables in the longitudinal motion, for Short period mode, is displayed in figure 

5 . 

 

 
 

Figure 5. Characteristics transient, Short period mode 
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The transient behaviour of the state variables in the longitudinal motion for Phugoid mode is displayed in figure 6. 

 

 
 

Figure 6. Characteristics transient, Phugoid mode 

 

7. Lateral modes, “Full aircraft” and “Scale mock-up” comparison 

The lateral-directional motion analysis has, as input data, the state matrices FA for Full aircraft, and SA  for Scale 

mock-up. These are given in (25). 

 

  

 

   (25) 

 

The eigenvalues F  for Full aircraft and S for Scale mock-up become (26): 

 

for Full aircraft for Scale Mock-up 

 

   (26) 

 

The first two modes are seen to be stable. The first mode is a damped oscillation, Dutch Roll. The second, Roll 

mode, is aperiodic very rapid convergent. The third mode, Spiral mode is very slow aperiodic divergent.  

Due to the similarity criteria and the aerodynamic equivalence, relation (22) that shows the dependence of the 

eigenvalues between F  and S remains valid for all the lateral modes. 

The above similarity criteria become an invariant for the eigenvalues, if the lateral-directional analysis is made using 

NACA Dimensionless System [4].  

Using this technique will lead to the same eigenvalues S and F . In this case the dimensionless time constants 


Ft

for Full aircraft and 


St for Scale mock-up are in relation (27): 

A F

0.0977

1.1565

1.6980

0.0000

0.0130

2.7604

0.1065

1.0000

0.9944

0.6324

0.2771

0.0112

0.0711

0.0000

0.0000

0.0000















 A S

0.4370

23.1303

33.9598

0.0000

0.0130

12.3448

0.4762

1.0000

0.9944

2.8283

1.2390

0.0112

0.3182

0.0000

0.0000

0.0000

















 F

0.1867 1.3282i

0.1867 1.3282i

2.7718

0.0100















  s

0.8348 5.9400i

0.8348 5.9400i

12.3958

0.0446
















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

 SFSF ttortSFt 20        (27) 

 

Table 5 shows a comparison for the characteristics times and damping ratio of the Full aircraft and Scale mock-up in 

the lateral-directional motion analysis. 

 

Table 5. Characteristics Times-Lateral Modes 

 

M O D E 
(Scale)S 

mock-up 

(Full)F 

aircraft 

SIMILARITY 

( 20SF ) 

Dutch Roll 

(damped oscillation) 

  0.139 0.139 SF    

n  5.998 1.341 SFnSnF /   

T  1.058 4.73 SFTT SF   

halft  0.830 3.71 SFtt
SF halfhalf   

halfN  0.783 0.783 
SF halfhalf

NN   

Roll 

(convergent) 

  0.0807 0.361 SFSF    

halft  0.0559 0.250 SFtt
SF halfhalf   

Spiral 

(divergent) 

  -22.4 -100.21 SFSF    

doublet  15.53 69.46 SFtt
SF halfhalf   

  

The results from table 3 show the same damping ratio and cycles in Dutch Roll mode.  

The time characteristics for the Full aircraft are obtained from those of the Scale mock-up multiplied with a constant, 

SF . The transient behaviour of the state variables in the lateral-directional motion is displayed in figure 7 for the 

Dutch Roll mode, in figure 8 for the Roll mode and in figure 9 for the Spiral mode, respectively. 

 

 
 

Figure 7. Characteristics transient, Dutch Roll mode 
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Figure 8. Characteristics transient, Roll mode 

 

 
 

Figure 9. Characteristics transitent, Spiral mode 

8. Conclusions 
 

This specific analysis about longitudinal and lateral-directional aircraft stability details how to translate, in a 

coherent mode, the results from a “scale flying mock-up” to the “full aircraft”.  

A practical “in-house” aerodynamic “boundary element” model was developed and used to evaluate the 

longitudinal and lateral aerodynamic coefficients and their stability derivatives. 

There are proposed similarity coherent criteria for the dimensional, inertial and mass characteristics between 

the real aircraft and the scale mock-up model.  

The equivalence for the aerodynamic derivatives for the real aircraft and the scale mock-up is achieved by 

choosing a flight regime that preserves the lift coefficient.  

Longitudinal stability analysis for the real aircraft and the scale model plane shows the same values for the 

damping factor in "Short period mode" and factored value with a scale constant for the time characteristics.  

The damping ratio in phugoid mode for scale model and full aircraft seems to be proportional to the 

aerodynamic drag ratio of the two models. 
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The comparison between the real aircraft and the scale model plane shows the same values for the damping 

factor in "Dutch roll".  

Factored values with a scale constant are obtained for the time characteristics in "Dutch roll", “Roll” and 

“Spiral” modes.  
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