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Abstract
CFD analysis of high speed flow fields requires numerical methods able to cope with a wide range of
flow phenomena. At the University of Liverpool, the Helicopter Multi-Block CFD code is used to model
different subsonic and transonic flows. An analytical Jacobian definition for the AUSM+ and the scheme
itself have been implemented into the fully implicit code sothat high Mach number flows can be also
modelled. A description of the derivation procedures needed to obtain the analytical Jacobian is given in
this paper along with a brief evaluation of the performancesof the implicit scheme for different test cases,
including turbulent flows. As examples of aerospace interest, a blunt body, a single cone with blunt nose,
a shock-wave/turbulent boundary-layer interaction generated by a ramp,and the Orion spacecraft were
considered. The SST turbulence model has been employed for the turbulent cases.

List of symbols
a Sound speed un Normal velocity to the cell face
F Flux vector J Jacobian matrix
W Vector of conservative variables P Vector of primitive variable
L Left eigenvectors R Right eigenvectors
H Total enthalpy γ Specific heat ratio
nx Unit vector inx direction ny Unit vector iny direction
nz Unit vector inz direction t Physical time-step
Re Reynolds number M Mach number
ρ Density u Velocity component inx direction
v Velocity component iny direction w Velocity component inzdirection
p pressure α Incidence angle
δ Boundary layer thickness/ Standoff distance θ Ramp angle

Superscripts and subscripts
φi , φL Left state φi+1, φR Right state
φn Normal to the cell face φ∞ Free stream property

1. Introduction

Efficient and accurate computation of the aerodynamic and thermal environment of hypersonic vehicles is essential in
their design and development. Computational fluid dynamicsmethods have gained significant prominence in recent
years and have been used in hypersonic vehicle design; however, a number of challenges remain, including devising
accurate and robust numerical schemes for the convective flux computation of Navier-Stokes solvers as well as the
turbulent flow field development.
For this work the CFD code developed at the CFD Laboratory of the University of Liverpool, HMBv2, has been ex-
tended and used. This solver uses finite volume spatial discretisation and fully un-factored time discretisation with a
GCG/ILU(0) linear system solver. It has been used successfully for a wide range of aerospace applications including
subsonic and transonic flows ( [1] and [2] ). The code generally employs the Roe or Osher schemes for the inviscid
fluxes evaluation. In the context of the present work, the AUSM + scheme has been implemented for high Mach num-
ber flows.
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Nowadays, upwind flux functions have overcome the challengeto compute compressible flow phenomena reliably
with reasonable accuracy. Several approximation procedures for solving the Riemann problem have been proposed
in the literature: Roe, Van Leer, HLLE, AUSM and others. The main difference between these schemes is the way
they approximate the exact wave structure. In order to solvethe interface Riemann problem, the left and the right
state at the surfaces of each finite volume need to be extrapolated from the centroid. The most common choice is the
Monotone Upstream-Centred Scheme for Conservation Laws, MUSCL, introduced by Van Leer. Another interpolation
technique that has been successfully used in the literaturefor high speed flows ( [3], [4] ) is the Spekreijse’s inter-
polation introduced in [5]. As a limiter for both the schemesthe Van Albada limiter seems to be the most popular.
Among the different Riemann solvers the AUSM-family has been shown to be capable of solving flow fields at a wide
range of Mach number and to perform reasonably well solving high speed flows. The original AUSM scheme has
been introduced for the first time by M.-S. Liou in [6] and thenimproved in [7] obtaining the AUSM+. The aim of
the AUSM-family is to combine the desirable attribute belonging to both flux difference (Roe) and vector (Van Leer)
splitting. The basic idea is the recognition of the convection and acoustic waves as two physically distinct processes.
The AUSM+ compared to the widely used Roe scheme has been shown to be less prone to develop shock anomalies as
the carbuncle phenomena ( [7], [8] and [9] ). Moreover in [10]a study of grid refinement and spatial order of accuracy
for unsteady flow fields around different transonic airfoil has been conducted using AUSM+ and Roe numerical fluxes.
The results have been compared to measured data and the AUSM+ solutions were in better agreement. Furthermore the
AUSM + scheme yields little numerical dissipation, so it could be preferred to schemes like the HLLE which is widely
considered free from the carbuncle anomaly but highly dissipative. A key issue in hypersonic flow computations is the
accurate prediction of heating. In [8] and [9] three properties that a flux function should have for accurate computation
of surface heat transfer rates have been proposed: 1) shock stability/robustness, 2) conservation of total enthalpy and
3) resolving boundary layer (which means solving contact discontinuities, as demonstrated by Van leer et al. in [11]).
The Roe scheme can resolve contact discontinuities but it does not guarantee the enthalpy preservation and the shock
stability, while the Van Leer scheme gives good prediction of shock structures but it is not enthalpy-preserving and
not formulated to incorporate effects of contact discontinuities. The AUSM+, instead, is formulated to guarantee the
enthalpy preservation and resolve contact discontinuities, but its robustness is not always guaranteed. For example in
[8] and [9] some convergence issues due to shock instabilities were reported. However, it has to be highlighted that in
these works the formulation of interface speed of sound suchthat a normal shock can be exactly resolved between two
discontinuous states is adopted. In the present work, as shown later on, the entropy satisfying formulation has been
chosen and seems to perform well without showing instabilities. Unfortunately, in [9], it has been also shown that no
flux function between Roe, Van Leer, HLLE and AUSM+ yields satisfactory predictions of the heat fluxes for a wide
range of test cases. In particular the AUSM+-type fluxes gave reasonable predictions for the heat transfer for a 2-D
problem like a cylinder but not for a 3-D sphere.
Various explicit and implicit schemes have been proposed toadvance in time the system of ordinary differential equa-
tions, obtained by the spatial discretisation. In an explicit method, the solution at the time stepn+ 1 depends only on
the known solution at the previous time step. In the implicitschemes, the new solution does not only depend on the
known solution at the previous time step, but also on a coupling between the grid point variables at the new time step.
Indeed, an implicit approach, after the linearisation of the residual at the new time step, results in a large system of
linear equations which as the time step tends to infinity results in the standard Newton’s method The system of linear
equations needs to be solved and this task can be accomplished using direct or iterative methods. The former are based
on the exact inversion of the system sparse matrix by means ofthe Gaussian elimination, as can be found in [12], or a
direct sparse matrix method, like the Boeing Real Sparse Library [13]. Although the recovery of the standard Newton’s
method, and of the quadratic convergence, was demonstratedon both structured and unstructured grids [12], [14], their
application in complex three dimensional problems requires an excessively high computational effort. Thus, in these
cases the linear system has to be solved using an iterative matrix inversion methodology. Different iterative methods
have been proposed in the literature. Among them there are the Alternating Direction Implicit (ADI) scheme [15], the
line Jacobi scheme [16], the Lower-Upper Symmetric Gauss-Siedel (LU-SGS) scheme [17] and the Newton-Krylov’s
methods. The first four methods are based on a splitting of theimplicit operator into a sum or products of, decoupled,
parts which can be inverted more easily. For this reason theyintroduce a factorisation error and are less strictly implicit
(the coupling between the grid point variables at the new time step is not considered overall but only along particular
directions). The Krylov subspace methods, instead, treat the system of linear equation in a more global way, allowing
a fully un-factored approach in which the new time level is introduced simultaneously for all the cells. Obviously,
this leads to an increment of the computational effort. Among the Krylov methods two schemes need to be noticed:
the Generalised Conjugate Gradient (GCG) methods introduced in [18] and [19]-[20] and the Generalised Minimal
Residual (GMRES) method introduced in [21]. Finally, it hasto be remembered that the efficency of Krylov-subspace
methods depends strongly on the preconditioning operation. The purpose of the preconditioning is to cluster the eigen-
values of the system matrix around unity. One of the most successful preconditioners is the Incomplete Lower Upper
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factorisation method, [22], with different levels of fill-in (commonly zero, ILU(0)).
Until the early nineties memory intensive methods like the Newton’s method were severely restricted by computer
technology. One of the first attempts to employ a Newton’s method solver to high speed flows is reported in [3] and
[4]. The work follows some of the ideas developed in [12] for subsonic and transonic flows, one in particular was to
add a dumping term to the Jacobian matrix diagonal to alleviate the start-up problems of the Newton’s method. In both
these line of works [3]-[4] and [12] a direct method has been used, but in following works, [23] and [24] respectively,
iterative methods have been taken into account with an ILU(0) factorisation. In the recent literature, to the knowledge
of the authors, only one work has successfully solved, efficiently, high speed, turbulent flow fields (taking into account
also chemical reaction) with a fully un-factored implicit solver. In this work, [25]-[26], the authors use a finite element
method with a Petrov-Galerkin scheme for the spatial discretisation and a fully implicit time discretisation with a GM-
RES/ILU(0) solver.
For the implicit formulation, the derivatives of the interface fluxes are needed. In [10], [27] and [28] a numerical
Jacobian for the AUSM+, AUSM +up and AUSMPW+ schemes, respectively, has been chosen and successfully em-
ployed for low Mach, subsonic, transonic and hypersonic cases. However, when possible, an analytical Jacobian is
preferred because it is more efficient. An analytical Jacobian for the AUSM and AUSM+ scheme has been studied
in [29] and [30] respectively. In [29] a comparative study ofthe analytical Jacobian for different schemes is proposed
and the AUSM Jacobian failed to converge, but not enough information is given about the derivation of the analytical
Jacobian. In [30], instead, a complete study of the derivation of a simplified analytical Jacobian for the AUSM+ was
presented. Moreover the latter has been successfully applied in a point implicit Runge-Kutta scheme to solve subsonic
and transonic flows. Nevertheless, since the authors were not interested in high speed cases no discussion about the
impact of the simplifications on the solution of these flow fields was reported.
In this work a fully analytical Jacobian of the AUSM+ has been implemented in a finite volume and fully un-factored
implicit solver. Subsequently, the CFD code has been used topredict different high speed test cases in order to eval-
uate the capabilities of the scheme. Not many works, dealingwith high Mach flow, used a fully un-factored implicit
approach, among them the work of Kirk et al., [25]-[26], has to be noticed. However, this differs form the present work
since a finite element method is employed. Regarding the definition of a AUSM-type scheme Jacobian, a simplified
derivation for the AUSM+ has been defined and successfully applied to subsonic and transonic flows by Langer and
Li, [30], while for high Mach flows numerical approximationsare commonly used.
In the high speed flow simulation, turbulence modelling remains a great challenge as a major source of errors in the
prediction of aerodynamic forces and heat transfer. Based on the review paper of Roy [31] it is clear that a lot of work
has been done in order to validate different turbulence models for simple high speed flows. However, validation works
are still going on for more complex cases. In this work we wantto give a small contribute to this topic by employing
the two-equation SST turbulence model, with the AUSM+, solving shock-wave/turbulent boundary-layer interactions.
The solutions have been compared with the experimental results of [32].
Finally, the turbulence model and the approximate Riemann solver has been used to evaluate the aerodynamic coeffi-
cients of the ORION CEV at different angles of attack. To validate the results, the latter have been compared to the
experimental data collected in [33].

2. HMB solver

2.1 Fully implicit formulation for a steady case

The Helicopter Multi-Block (HMB) code, developed at Liverpool University, is used in the present work. The Navier-
Stokes (NS) equations are discretised using a cell-centredfinite volume approach. The computational domain is di-
vided into a finite number of non-overlapping control-volumes, and the governing equations are applied in integral-
conservation form at each cell. The equations are written ina curvilinear co-ordinate system. The spatial discretisation
of the NS equations leads to a set of ordinary differential equations in time,

d
dt

(W i, j,kVi, j,k) = −Ri, j,k(W) (1)

whereW andR are the vectors of the cell conserved variables and residuals, respectively. Using an implicit time
discretisation on the pseudo-timet∗,
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Wm+1
i, j,k −Wm

i, j,k

∆t∗
= −

1
Vi, j,k

Ri, j,k(Wm+1
i, j,k ) (2)

where the superscriptm+ 1 denotes the time level (m+ 1)∆t∗ in pseudo-time. In equation (2) the flux residual on
the right hand side is evaluated at the new time levelm+ 1 and is therefore expressed in terms of the unknown solution
at this new time level. The flux residualRi, j,k(Wm+1

i, j,k ) is linearised in the pseudo-time variablet∗ as follows,

Ri, j,k

(
Wm+1

)
= Ri, j,k (Wm) +

∂Ri, j,k

∂t∗
∆t∗ +O(∆t∗2)

≈ Ri, j,k (Wm) +
∂Ri, j,k

∂W i, j,k

∂W i, j,k

∂t∗
∆t∗

≈ Ri, j,k (Wm) +
∂Ri, j,k

∂W i, j,k
∆W i, j,k (3)

where∆W i, j,k = Wm+1
i, j,k − Wm

i, j,k. Substituting equations (3) into (2), and rewriting in terms of the primitive vari-
ablesP, the fully implicit system to be solved is as follows,


(Vi, j,k

∆t∗
∂W i, j,k

∂Pi, j,k
+
∂Ri, j,k

∂Pi, j,k

∆Pi, j,k = −Ri, j,k(Wm) (4)

Note that the system is solved in the primitive variables formulation for simplicity and stability reasons.

2.2 Jacobian Formulation

Considering the inviscid part of the residual of the left face for cell ”i”, denoted byfi− 1
2
, and following the general

approach for Riemann solvers,

f i− 1
2
= f i− 1

2
(Pl ,Pr ) (5)

wherePl andPr are the left and right states of the Riemann problem. Applying MUSCL interpolation, both states
arePl = Pl(Pi−2,Pi−1,Pi) andPr = Pr (Pi−1,Pi ,Pi+1), respectively.f i− 1

2
is then computed using AUSM+ [7] scheme.

For the cell facei − 1
2 there are four contributions to the Jacobian matrix

∂f i

∂Pi−2
,
∂f i

∂Pi−1
,
∂f i

∂Pi
,
∂f i

∂Pi+1
. (6)

To avoid ill-conditioning a first order Jacobian is employed, indeed the exact Jacobian matrix is approximated by
removing the dependence in the MUSCL interpolation;

∂f i

∂Pi−2
≈ 0;

∂f i

∂Pi−1
≈
∂f i

∂Pl
;
∂f i

∂Pi
≈
∂f i

∂Pr
;

∂f i

∂Pi+1
≈ 0 (7)
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3. The AUSM + scheme

As a first step in common in all AUSM schemes, the inviscid flux is explicitly split into convective and pressure fluxes;
then it is possible to write the numerical flux, Eq. (5), as follow:

f i−1/2 = ṁ1/2P+ p1/2 (8)

where using an upwind approach:

P =
{

PL if ṁ1/2 > 0; PR otherwise
}

(9)

3.1 Mass flux

The mass flux at the interface in accordance with the idea of up-winding has the form of:

ṁ1/2 = a1/2 M1/2

{
ρL if M1/2 > 0; ρR otherwise

}
(10)

wherea1/2 andM1/2 are the interface speed of sound and Mach number respectively.
The interface Mach number is expressed in terms of the left and right Mach numbers,ML andMR, as follows

M1/2 = M +

(4)
(ML ) + M −

(4)
(MR) (11)

where

ML =
un,L

a1/2
MR =

un,R

a1/2
(12)

and the polynomialsM±
(4)

are defined next

M ±

(4)
(M) =



M ±
(1)

(M) if |M| ≥ 1

M ±
(2)

(M)(1∓ 16βM ∓
(2)

(M)) otherwise

(13)

with β = 1/8 and

M ±
(1)

(M) = 1
2(M ± |M|); M ±

(2)
(M) = ± 1

4(M ± 1)2 (14)

The entropy-satisfying definition of the interface speed ofsound is used in this work, thena1
2

is given by the fol-
lowing expression:

a1/2 = min( âL , âR ); âL = a∗2
L
/max( a∗L,un,L ), âR = a∗2

R
/max( a∗

R
,−un,R ) (15)
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whereun,L/R anda∗L/R are the left and right normal velocities and critical speed of sounds at the cell face. The latter,
under the hypothesis of perfect gas, can be expressed in terms of the total enthalpy.

a∗2
L/R
=

2(γ − 1)
γ + 1

HL/R (16)

3.2 Pressure flux

In the AUSM-family a general interface pressure formula is used as a starting point

p1/2 = P +
(5)

(ML )pL + P −
(5)

(MR)pR (17)

wherepL/R are the interface left and right pressures and the polynomials P ±
(5)

are

P ±
(5)

(M) =



1
M M ±

(1)
(M) if |M| ≥ 1

M ±
(2)

(M)(±2− M ∓ 16αMM ∓
(2)

(M)) otherwise

(18)

with α = 3/16.

4. A Jacobian matrix for AUSM +

The Jacobian matrix is calculated analytically by repeatedapplication of the chain rule. The residual for one cell is
built up as a summation of the fluxes through the cell faces. Then, considering the inviscid numerical flux, Eq. (8)

∂f
i− 1

2

∂PL/R

=
∂ṁ1/2

∂PL/R

P+ ṁ1/2

∂P
∂PL/R

+
∂p1/2

∂PL/R
(19)

whereP is defined in equation (9).

4.1 Derivatives of the interface speed of sound

As hinted in the introduction the interface speed of sound iscritical in the AUSM+. A good analytical Jacobian for
this scheme has to represent its dependencies as best as possible. Differentiating expression (15), the presence of the
min/maxoperators leads to a dual formulation at the borderline cases like âL = âR anda∗L/R = un,L/R; it has to be noticed
here that the interface speed of sound is not represented by acontinuous function. While it is not an issue in computing
the numerical fluxes, the Jacobian should take into account the following possibilities (see equation (15)):

• whenâL = âR both the left and right state could be chosen by themin/maxoperators to evaluatea1/2

• whena∗L/R = ±un,L/R the interface speed of sound could be either a function only of the critical speeds of sound or
a function ofa∗

L/R
and the normal velocitiesun,L/R.
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Here we suggest a simple approach to deal with these situations. When̂aL = âR anda∗L/R = ±un,L/R we consider the
interface speed of sound derivative as in equation (20) where, at the points of discontinuity, the average of the left and
right limits is used. With this choice we hope to consolidatethe stability of the scheme. This discussion led to the
following expression to evaluate the derivative ofa1/2

∂a1/2

∂PL/R

=



for âL < âR



∂a∗
L

∂PL/R
if a∗

L
> un,L

∂
∂PL/R

a∗2
L

un,L
if a∗

L
< un,L

∂
∂PL/R

[
1
2

(
a∗

L
+

a∗2
L

un,L

)]
if a∗

L
= un,L

for âL > âR



∂a∗
R

∂PL/R
if a∗

R
> −un,R

∂
∂PL/R

a∗2
R
−un,R

if a∗
R
< −un,R

∂
∂PL/R

[
1
2

(
a∗

R
+

a∗2
R
−un,R

)]
if a∗

R
= −un,R

for âL = âR



1
2
∂
∂PL/R

(
a∗

L
+ a∗

R

)
if a∗

L
> un,L & a∗

R
> −un,R

1
2
∂
∂PL/R

(
a∗2

L
un,L
+

a∗2R
−unR

)
if

a∗2
L

un,L
=

a∗2
R
−un,R

1
2
∂
∂PL/R

(
a∗

L
+

a∗2
R
−un,R

)
if a∗

L
=

a∗2
R
−un,R

1
2
∂
∂PL/R

(
a∗2

L
un,L
+ a∗

R

)
if

a∗2
L

uL,n
= a∗

R

(20)

where

∂a∗
L
∂PL
=

γ−1
a∗
L
(γ+1)

{
−
γ

γ−1

pL

ρ2
L
, uL , vL , wL ,

γ

γ−1
1
ρL

}

∂a∗
R
∂PR
=

γ−1
a∗
R

(γ+1)

{
−
γ

γ−1

pR

ρ2
R
, uR, vR, wR,

γ

γ−1
1
ρR

}

∂a∗
L
∂PR
= 0

∂a∗
R
∂PL
= 0

(21)
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and

∂un,L

∂PL
=

{
0, nx, ny, nz, 0

}

∂un,R

∂PR
=

{
0, nx, ny, nz, 0

}

∂un,L

∂PR
= 0

∂un,R

∂PL
= 0

(22)

n =
{
nx, ny, nz

}T
is the cell face normal.

4.2 Derivatives of the interface Mach number

From equation (11) follows

∂M1/2

∂PL/R

=
∂M +

(4)
(ML )

∂PL/R

+
∂M −

(4)
(MR)

∂PL/R

(23)

where considering equation (13)

∂M +
(4)

(ML )

∂PL/R

=



∂M +

(1)
(ML )

∂PL/R
if |ML | ≥ 1

∂M +

(2)
(ML )

∂PL/R
(1+ 16βM −

(2)
(ML)) − 16βM +

(2) (ML)
∂M −

(2)
(ML )

∂PL/R
otherwise

(24)

∂M −
(4)

(MR)

∂PL/R

=



∂M −

(1)
(MR)

∂PL/R
if |MR| ≥ 1

∂M −

(2)
(MR)

∂PL/R
(1+ 16βM +

(2)
(MR)) + 16βM −

(2)
(MR)

∂M +

(2)
(MR)

∂PL/R
otherwise

(25)

and

∂M±
(1)

(ML/R)

∂PL/R

= ±
1
2

(
∂ML/R

∂PL/R

±
∂|ML/R|

∂PL/R

)
(26)

∂M±
(2)

(ML/R)

∂PL/R

= ±
1
2

(ML/R ± 1)
∂ML/R

∂PL/R

(27)
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with
∂ML
∂PL/R

,
∂|ML |

∂PL/R
,
∂MR
∂PL/R

and
∂|MR |

∂PL/R
obtained from equations (12) taking in account equations (20), (21), (22). It has to

be noticed that the split Mach number polynomials, see Eq. (13), are continuous functions and so result their deriva-
tives, Eqs. (24) and (25).

4.3 Derivatives of the pressure flux

Finally regarding the pressure flux derivative, from equation (17)

∂p1/2

∂PL/R

=
∂P +

(5)
(ML )

∂PL/R

pL +
∂P −

(5)
(MR)

∂PL/R

pR + P +
(5)

(ML )
∂pL

∂PL/R

+ P −
(5)

(MR)
∂pR

∂PL/R

(28)

where considering equation (18)

∂P +
(5)

(ML )

∂PL/R

=



1
ML

∂M +

(1)
(ML )

∂PL/R
−

M +

(1)
(ML )

M2
L

∂ML
∂PL/R

if |ML | ≥ 1

∂M +

(2)
(ML )

∂PL/R
(2− ML − 16αML M −

(2)
(ML)) −

M +

(2)
(ML)

(
∂ML
∂PL/R
+ 16α(ML

∂M −

(2)
(ML )

∂PL/R
+ M −

(2)
(ML)

∂ML
∂PL/R

)
) otherwise

(29)

∂P −
(5)

(MR)

∂PL/R

=



1
MR

∂M −

(1)
(MR)

∂PL/R
−

M −

(1)
(MR)

M2
R

∂MR
∂PL/R

i f |MR| ≥ 1

∂M −

(2)
(MR)

∂PL/R
(−2− MR + 16αMRM +

(2)
(MR)) −

M −

(2)
(ML)

(
∂MR
∂PL/R
− 16α(MR

∂M +

(2)
(MR)

∂PL/R
+ M +

(2)
(MR)

∂MR
∂PL/R

)
) otherwise

(30)

Also the derivatives of the fifth degree polynomials are continuous as the polynomials definitions (18).

5. Comparison of the AUSM+ and Roe schemes

The geometry considered for the comparison is a 15o cone with a blunt nose of radiusR= 0.01L, whereL is the length
of the cone. Some results are compared also with a theoretical approach and the correlation of [34], see table 1.
The AUSM+ predictions showed the best agreement with the theory and the correlation results. The agreement given
for the stagnation quantities is quite remarkable, the differences are less than 0.2%. The standoff distance is slightly
under-predicted, about 7%. The Roe scheme, instead, gives over-predicted stagnation point quantities, 5% and 18%,
and an underestimated, about 15%, standoff distance. Moreover, figures 1a and 1b show that the shock predicted by
the AUSM+ present less spurious oscillations unlike the Roe scheme, especially around the stagnation point.
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Table 1: Comparison of AUSM+ and Roe schemes with theory results and correlation [34].

Non-dimensional quantity Method Values

Stagnation AUSM + 5,439

point Roe 5.716

ρ/ρ∞ THEORY 5,442

Stagnation AUSM + 32.593

point Roe 38.5

p/p∞ THEORY 32.653

Standoff AUSM + 0.152

distance Roe 0.128

δ/R a
n [34] 0.163

aRn is the nose curvature radius

(a) AUSM + (b) Roe

Figure 1: Inviscid flow around a 15o cone with blunt nose (R= 0.01L) at M = 5; fully-implicit.

6. Performance of the implicit scheme

In this section, a review of the performance of the implemented implicit AUSM + schemes is given. The inviscid flow
field around an infinite cylinder, as classical blunt body case of aerospace interest, has been considered. In order to
evaluate the maximum CFL numbers that can be run at different norm-of-the-error levels with the implicit scheme,
two different Mach numbers and grid refinements have been considered. The fine grid is obtained from the coarse by
halving the cell size in the transverse direction to the shock. In the present work the following norm-of-the-error has
been used:

log

(
L2(Res. t > 0)
L2(Res. t = 0)

)
(31)

Looking at figure 2a it can be claimed that the analytical Jacobian is well defined. For both Mach 3 and 5, and
grid refinements, the solver can run at a CFL numbers equal andoften even higher than the respective numerical Jaco-
bian. The numerical Jacobian is evaluated by second order central finite differences. The slightly lower performance,
in terms ofCFL, of the latter can be due to the fact that the interface speed of sound definition, Eq. (15), does not
result in a continuous function and then it could poorly affect the numerical approximations of its derivative.
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(a) Infinite cylinder, inviscid flow. (b) Orion CEV, laminar flow (Re= 1 x 10 5).

Figure 2: CFL comparison: numerical and analytical Jacobian, AUSM + with entropy satisfyinga1/2.

(a) Residual vs Iteration. (b) Time vs Residual.

Figure 3: Computational cost comparison: infinite cylinder, coarse grid, inviscid flow, AUSM+ scheme with entropy
satisfyinga1/2, M = 3.

To evaluate the scheme behaviour for more complex cases a laminar flow field around the Orion CEV has been consid-
ered. The grid used, shown in figure 6b of section 8, has a spatial resolution normal to the shock similar to the infinite
cylinder coarse grid. As it can be seen from figure 2b the implicit scheme allows to run at least CFL numbers around
2.5 also in presence of the strong shocks, expansions and interactions characterising the flow field around the Orion.
Regarding the computational time a series of test has been conducted on a quad-core XeonR© CPU machine. Figures 3
shows some results for Mach 3. It can be noticed that the analytical Jacobian leads to a solver that is even two times
faster then the respective numerical one. This is due mainlyto the higher computational efficency of evaluating an
analytical Jacobian compared to the numerical approach. Incomparison to the explicit, 4-stage Runge Kutta, AUSM+

the implicit scheme becomes 30% and 40% faster after the logarithm of the normalised residual has dropped to−1
and−2, respectively, due to the increased CFL numbers. Finally,a comparison between the times needed to obtain a
solution for the infinite cylinder case, with a norm of the error equal to−7 has been conducted. The explicit, 4-stage
Runge Kutta, time marching with a CFL number of 0.9 needed 19min to obtain the solution. For the implicit method,
with the analytical Jacobian, two approaches have been considered. The first involved the 4-stage Runge Kutta till a
logarithm of the residual of−1 and then the implicit scheme till−7 with a CFL equal to 2.5. In the second one, instead,
the explicit scheme till−2 and then the implicit method, with CFL of 3, till−7 have been used. In both latter cases, the
time to obtain the solution has been decreased to 13min and 11min, respectively. So, this comparison confirms that
the implicit approach is 30− 40% faster than the fully explicit time marching.

7. Shock-wave/ turbulent boundary-layer interaction test case

In [32] shock-wave/boundary-layer interactions, generated using two-dimensional compression ramps, were studied
experimentally. The characteristics of the incoming boundary layer were:δ = 24mm, M∞ = 2.84,Re= 6.5 x 10 7 m −1

and different ramp angle have been considered. Among the results, the curves of the wall pressure along the recircula-
tion zones are presented.
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In this work, we solved numerically the same flow fields using the SST model and the AUSM+ scheme. Figure
4a shows the comparison for the pressure curves, while in figures 4b, 5a and 5b the Mach contours are presented for
two ramp angles.

(a) Pressure curves forθ = 16 o andθ = 20 o ramp angles. (b) Mach contours atθ = 20 o.

Figure 4: SST, AUSM+ with entropy satisfyinga1/2, M = 2.84,Re= 6.5 x 10 7 m −1.

The numerical solutions fit reasonably the experimental data. Indeed, the positions of the recirculation zones predicted
by the CFD code are comparable to the ones given by the experiment. Figures 5a and 5b confirm that the SST model
and the AUSM+ scheme are able to capture the recirculation zones with a reasonable level of reliability.

(a) θ = 16 o. (b) θ = 20 o.

Figure 5: Mach contours: SST, AUSM+ with entropy satisfyinga1/2, M = 2.84,Re= 6.5 x 10 7 m −1.

8. Orion CEV aerodynamic testing

As a final test for the solver, in this section the prediction of the aerodynamic coefficients of the Orion, figures 6a-
6b, are compared to the experimental results collected in [33]. Ref. [33] presented a summary of the experimental
static aerodynamic data of the Orion CEV. These data were collected during the wind-tunnel test program executed at
different facilities to support the development of the spacecraft.
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(a) From [33]. (b)

Figure 6: Orion CEV sketch, (a), and surface grid, (b).

In this work the results for the test case at Mach 3 and Reynolds 1.5 x 10 6 have been used. As it can be seen from
figures 7a and 7b, the predictions given by the CFD code are in good agreement with the experimental data. Indeed,
the relative differences between the numerical and the experimental resultsare not more than 3%.

(a) (b)

Figure 7: Orion CEVCL, (a), andCD, (b): SST, AUSM+ with entropy satisfyinga1/2, M = 3, Re= 1.5 x 10 6.

The Mach contours at two angles of attack are presented in figures 8a and 8b. It has to be highlighted that no shock
instabilities have been observed during the simulations.

9. Conclusions

In the first part of this paper we presented the derivation of afully analytical Jacobian for the AUSM+ scheme. Then,
the implicit scheme with the analytical Jacobian has been tested resulting to be faster than the same implicit scheme
with a numerically approximate Jacobian and a 4-stage Runge-Kutta method. This is due to the higher computational
efficency of evaluating an analytical Jacobian than a numericalapproximation and the higher CFL number allowed by
the implicit approach. Additional improvements are still possible and further investigations will be conducted to eval-
uate possible simplifications that can be made to the analytical Jacobian. The aim will is to improve the computational
efficency of the latter without affecting the stability of the scheme. In the second part of thiswork, the SST turbulence
model was employed together with the AUSM+ scheme, to solve shock-wave/turbulent boundary-layer interactions
for three different shock angles. The results, compared to experimental data, showed that the SST model has been
able to capture the correct positions of the recirculation zones. Finally, the SST model and the AUSM+ scheme have
been employed in the prediction of some aerodynamic coefficients of the Orion spacecraft. Again, the comparison with
experimental data has shown the reliability of the numerical approach.
In future works the authors will focus on hybrid continuum/kinetic Boltzmann methods for partially rarefied flow, in
which the AUSM+-family fluxes will represent the basis for the continuum part.
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(a)α = 175o. (b) α = 160o.

Figure 8: Mach contours: SST, AUSM+ with entropy satisfyinga1/2, M = 3, Re= 1.5 x 10 6.
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