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Abstract

CFD analysis of high speed flow fields requires numerical pughable to cope with a wide range of
flow phenomena. At the University of Liverpool, the HelicepMulti-Block CFD code is used to model
different subsonic and transonic flows. An analytical Jacobédimition for the AUSM* and the scheme
itself have been implemented into the fully implicit codethat high Mach number flows can be also
modelled. A description of the derivation procedures ndddebtain the analytical Jacobian is given in
this paper along with a brief evaluation of the performarafabe implicit scheme for dierent test cases,
including turbulent flows. As examples of aerospace integeblunt body, a single cone with blunt nose,
a shock-wavgurbulent boundary-layer interaction generated by a raanp, the Orion spacecraft were
considered. The SST turbulence model has been employeuefdurtbulent cases.

List of symbols

a Sound speed Un Normal velocity to the cell face
F Flux vector J Jacobian matrix
w Vector of conservative variables P Vector of primitive variable
L Left eigenvectors R Right eigenvectors
H Total enthalpy b4 Specific heat ratio
Ny Unit vector inx direction ny Unit vector iny direction
n; Unit vector inz direction t Physical time-step
Re Reynolds number M Mach number
P Density u Velocity component irx direction
v Velocity component iry direction w Velocity component irz direction
p pressure a Incidence angle
§ Boundary layer thicknegsStanddr distance 6 Ramp angle
Superscripts and subscripts
¢, ¢ Leftstate #is1,¢;  Right state
on Normal to the cell face Do Free stream property

1. Introduction

Efficient and accurate computation of the aerodynamic and #lemvironment of hypersonic vehicles is essential in
their design and development. Computational fluid dynamiethods have gained significant prominence in recent
years and have been used in hypersonic vehicle design; kovenumber of challenges remain, including devising
accurate and robust numerical schemes for the convectivedimputation of Navier-Stokes solvers as well as the
turbulent flow field development.

For this work the CFD code developed at the CFD Laboratorjhefuniversity of Liverpool, HMBv2, has been ex-
tended and used. This solver uses finite volume spatialedisation and fully un-factored time discretisation with a
GC@ILU(0) linear system solver. It has been used successfatlafwide range of aerospace applications including
subsonic and transonic flows ( [1] and [2] ). The code genermtiploys the Roe or Osher schemes for the inviscid
fluxes evaluation. In the context of the present work, the KMU'Sscheme has been implemented for high Mach num-
ber flows.
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Nowadays, upwind flux functions have overcome the challdnggompute compressible flow phenomena reliably
with reasonable accuracy. Several approximation proesdior solving the Riemann problem have been proposed
in the literature: Roe, Van Leer, HLLE, AUSM and others. Thaimdifference between these schemes is the way
they approximate the exact wave structure. In order to sthiganterface Riemann problem, the left and the right
state at the surfaces of each finite volume need to be ex#i@goirom the centroid. The most common choice is the
Monotone Upstream-Centred Scheme for Conservation LawkS@L, introduced by Van Leer. Another interpolation
technique that has been successfully used in the literédurieigh speed flows ( [3], [4] ) is the Spekreijse’s inter-
polation introduced in [5]. As a limiter for both the schentke Van Albada limiter seems to be the most popular.
Among the diferent Riemann solvers the AUSM-family has been shown to palia of solving flow fields at a wide
range of Mach number and to perform reasonably well solvigh speed flows. The original AUSM scheme has
been introduced for the first time by M.-S. Liou in [6] and thHerproved in [7] obtaining the AUSM. The aim of

the AUSM-family is to combine the desirable attribute bejimig to both flux diference (Roe) and vector (Van Leer)
splitting. The basic idea is the recognition of the conveatind acoustic waves as two physically distinct processes.
The AUSM™ compared to the widely used Roe scheme has been shown tslpedes to develop shock anomalies as
the carbuncle phenomena ( [7], [8] and [9] ). Moreover in [AGfudy of grid refinement and spatial order of accuracy
for unsteady flow fields aroundfirent transonic airfoil has been conducted using AU'SMd Roe numerical fluxes.
The results have been compared to measured data and the Ald8IMtions were in better agreement. Furthermore the
AUSM * scheme yields little numerical dissipation, so it could bef@rred to schemes like the HLLE which is widely
considered free from the carbuncle anomaly but highly gégsie. A key issue in hypersonic flow computations is the
accurate prediction of heating. In [8] and [9] three projgsrthat a flux function should have for accurate computation
of surface heat transfer rates have been proposed: 1) stadgktg/robustness, 2) conservation of total enthalpy and
3) resolving boundary layer (which means solving contastalitinuities, as demonstrated by Van leer et al. in [11]).
The Roe scheme can resolve contact discontinuities buei dot guarantee the enthalpy preservation and the shock
stability, while the Van Leer scheme gives good predictibstmck structures but it is not enthalpy-preserving and
not formulated to incorporateffects of contact discontinuities. The AUSMinstead, is formulated to guarantee the
enthalpy preservation and resolve contact discontirgyjibat its robustness is not always guaranteed. For example i
[8] and [9] some convergence issues due to shock instakilitere reported. However, it has to be highlighted that in
these works the formulation of interface speed of sound thetha normal shock can be exactly resolved between two
discontinuous states is adopted. In the present work, agrstater on, the entropy satisfying formulation has been
chosen and seems to perform well without showing instadslitUnfortunately, in [9], it has been also shown that no
flux function between Roe, Van Leer, HLLE and AUSMields satisfactory predictions of the heat fluxes for a wide
range of test cases. In particular the AUSMype fluxes gave reasonable predictions for the heat eamnsf a 2-D
problem like a cylinder but not for a 3-D sphere.

Various explicit and implicit schemes have been proposedit@nce in time the system of ordinarytfdrential equa-
tions, obtained by the spatial discretisation. In an eipiiethod, the solution at the time stap- 1 depends only on
the known solution at the previous time step. In the impbcihemes, the new solution does not only depend on the
known solution at the previous time step, but also on a cogdietween the grid point variables at the new time step.
Indeed, an implicit approach, after the linearisation @&f tasidual at the new time step, results in a large system of
linear equations which as the time step tends to infinitylte$u the standard Newton’s method The system of linear
equations needs to be solved and this task can be acconplistng direct or iterative methods. The former are based
on the exact inversion of the system sparse matrix by meathedbaussian elimination, as can be found in [12], or a
direct sparse matrix method, like the Boeing Real Sparsety13]. Although the recovery of the standard Newton'’s
method, and of the quadratic convergence, was demonstateoth structured and unstructured grids [12], [14], their
application in complex three dimensional problems reguae excessively high computationélicet. Thus, in these
cases the linear system has to be solved using an iteratireximxersion methodology. Dierent iterative methods
have been proposed in the literature. Among them there arAltbrnating Direction Implicit (ADI) scheme [15], the
line Jacobi scheme [16], the Lower-Upper Symmetric Gausdeb (LU-SGS) scheme [17] and the Newton-Krylov’s
methods. The first four methods are based on a splitting aftpécit operator into a sum or products of, decoupled,
parts which can be inverted more easily. For this reasonitiieyduce a factorisation error and are less strictly ikipli
(the coupling between the grid point variables at the neve titep is not considered overall but only along particular
directions). The Krylov subspace methods, instead, treasystem of linear equation in a more global way, allowing
a fully un-factored approach in which the new time level isaduced simultaneously for all the cells. Obviously,
this leads to an increment of the computation@®. Among the Krylov methods two schemes need to be noticed:
the Generalised Conjugate Gradient (GCG) methods intextlirc [18] and [19]-[20] and the Generalised Minimal
Residual (GMRES) method introduced in [21]. Finally, it lade remembered that théieency of Krylov-subspace
methods depends strongly on the preconditioning operafiba purpose of the preconditioning is to cluster the eigen-
values of the system matrix around unity. One of the mostessfal preconditioners is the Incomplete Lower Upper
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factorisation method, [22], with fierent levels of fill-in (commonly zero, ILU(0)).

Until the early nineties memory intensive methods like theton’s method were severely restricted by computer
technology. One of the first attempts to employ a Newton'shoetsolver to high speed flows is reported in [3] and
[4]. The work follows some of the ideas developed in [12] fabsonic and transonic flows, one in particular was to
add a dumping term to the Jacobian matrix diagonal to alietree start-up problems of the Newton’s method. In both
these line of works [3]-[4] and [12] a direct method has besedy but in following works, [23] and [24] respectively,
iterative methods have been taken into account with an 1) &@orisation. In the recent literature, to the knowledge
of the authors, only one work has successfully solvéitiently, high speed, turbulent flow fields (taking into acebu
also chemical reaction) with a fully un-factored impliaithger. In this work, [25]-[26], the authors use a finite elerhe
method with a Petrov-Galerkin scheme for the spatial dissaton and a fully implicit time discretisation with a GM-
RESILU(O) solver.

For the implicit formulation, the derivatives of the intack fluxes are needed. In [10], [27] and [28] a numerical
Jacobian for the AUSM, AUSM *up and AUSMPW" schemes, respectively, has been chosen and successfully em
ployed for low Mach, subsonic, transonic and hypersoniesasiowever, when possible, an analytical Jacobian is
preferred because it is mordieient. An analytical Jacobian for the AUSM and AUSMscheme has been studied
in [29] and [30] respectively. In [29] a comparative studytioé analytical Jacobian for fiierent schemes is proposed
and the AUSM Jacobian failed to converge, but not enoughrmmdition is given about the derivation of the analytical
Jacobian. In [30], instead, a complete study of the dedwatif a simplified analytical Jacobian for the AUSMvas
presented. Moreover the latter has been successfullyeapiplia point implicit Runge-Kutta scheme to solve subsonic
and transonic flows. Nevertheless, since the authors werimteoested in high speed cases no discussion about the
impact of the simplifications on the solution of these flond#elvas reported.

In this work a fully analytical Jacobian of the AUSMhas been implemented in a finite volume and fully un-factored
implicit solver. Subsequently, the CFD code has been usedeitict diferent high speed test cases in order to eval-
uate the capabilities of the scheme. Not many works, dealittghigh Mach flow, used a fully un-factored implicit
approach, among them the work of Kirk et al., [25]-[26], hab¢ noticed. However, thisfiiérs form the present work
since a finite element method is employed. Regarding theitiefirof a AUSM-type scheme Jacobian, a simplified
derivation for the AUSM' has been defined and successfully applied to subsonic ambtriz flows by Langer and

Li, [30], while for high Mach flows numerical approximatioase commonly used.

In the high speed flow simulation, turbulence modelling rizr®a great challenge as a major source of errors in the
prediction of aerodynamic forces and heat transfer. Bapdt@review paper of Roy [31] it is clear that a lot of work
has been done in order to validatéeient turbulence models for simple high speed flows. Howeadidation works

are still going on for more complex cases. In this work we wargive a small contribute to this topic by employing
the two-equation SST turbulence model, with the AUSMolving shock-waviurbulent boundary-layer interactions.
The solutions have been compared with the experimentatsesi/32].

Finally, the turbulence model and the approximate Riematwes has been used to evaluate the aerodynamigicoe
cients of the ORION CEV at élierent angles of attack. To validate the results, the latige lbeen compared to the
experimental data collected in [33].

2. HMB solver

2.1 Fully implicit formulation for a steady case

The Helicopter Multi-Block (HMB) code, developed at Livexqd University, is used in the present work. The Navier-
Stokes (NS) equations are discretised using a cell-cefitrit¢el volume approach. The computational domain is di-
vided into a finite number of non-overlapping control-voksnand the governing equations are applied in integral-
conservation form at each cell. The equations are writt@ndarvilinear co-ordinate system. The spatial discretisat

of the NS equations leads to a set of ordinafjedential equations in time,

d
d_t(Wi,j,kVi,j,k) = —R; k(W) 1)

whereW andR are the vectors of the cell conserved variables and residiedpectively. Using an implicit time
discretisation on the pseudo-tirtie
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wmeL_ym 1
i.j.k ik R, jk(Wimgrk1
At* Viik 7 b

)

where the superscriph + 1 denotes the time levein(+ 1)At* in pseudo-time. In equation (2) the flux residual on
the right hand side is evaluated at the new time levell and is therefore expressed in terms of the unknown solution
at this new time level. The flux residuﬁl,j,k(W{T}*kl) is linearised in the pseudo-time varialles follows,

OR;
Ry (W™ + —m';j’kAt* + O(At?)
OR; ik OW,
i,j,k |,],kAt*
oWk ot

ORi jx
Rijk (W™) + W

Ri,j,k (Wm+l)

Q

Rijk (W™ +

AW, jk 3)

Q

i,j.k

Wimj « Substituting equations (3) into (2), and rewriting in terwf the primitive vari-

where AW, jx = W™,
ystem to be solved is as follows,

1
gk T
ablesP, the fully impficit S

Viik Wik  ORijk
= — + 2 AP; ik = —Ri k(W™ 4
[( At OPijx 0Pk bk k(W) (4)

Note that the system is solved in the primitive variablestiglation for simplicity and stability reasons.

2.2 Jacobian Formulation
Considering the inviscid part of the residual of the leftefdor cell "i”, denoted byfi_%, and following the general

approach for Riemann solvers,
fi—% = fi—%(Pl, Pr) (5)

whereP, and P, are the left and right states of the Riemann problem. ApplWHJSCL interpolation, both states
areP, = Pi(Pi_2, Pi_1, P)) andP; = P,(P;i_1, Pi, Pi;+1), respectively.fi_% is then computed using AUSM|[7] scheme.

For the cell face — % there are four contributions to the Jacobian matrix

of; ofi (9_f| ofi ()
0Py’ OPi_;’ 0P 0P

To avoid ill-conditioning a first order Jacobian is employ@uleed the exact Jacobian matrix is approximated by
removing the dependence in the MUSCL interpolation;

o o O o oh o oh o -
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3. The AUSM* scheme

As afirst step in common in all AUSM schemes, the inviscid fgxplicitly split into convective and pressure fluxes;
then it is possible to write the numerical flux, Eq. (5), asdet

fi—1/2 = r:rl/zp + pj_/z (8)

where using an upwind approach:

P :{ P ifm,>0; R, otherwise} )

3.1 Mass flux

The mass flux at the interface in accordance with the idea-efinding has the form of:

m,=a, MM{ p. itM,>0; p otherwise} (20)

wherea , andM, , are the interface speed of sound and Mach number respgctivel
The interface Mach number is expressed in terms of the Iefright Mach numberdyl, andMg, as follows

M, =M (M) + M, (M) (11)
where
_ Y% = he
M" T A, MR T a, (12)

and the ponnomiaIM(j) are defined next

My (M) if M| > 1
M(;(M) = (13)
M, (M)(1+ 1M, (M)) otherwise
Wlthﬂ = ]_/8 and
MA(M) = (M £ M), M*(M) = +3(M + 1)? (14)

The entropy-satisfying definition of the interface speedadind is used in this work, them% is given by the fol-
lowing expression:

a,=min(g.3); 3 =a%/maxa,u, ), & =a?/maxa,-y,) (15)
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wherey, . anda’_, are the left and right normal velocities and critical speédaunds at the cell face. The latter,
under the hypothesis of perfect gas, can be expressed in tdrtine total enthalpy.

2r-1)
*2 _
R y+1 HL/R (16)

3.2 Pressure flux

In the AUSM-family a general interface pressure formulagedias a starting point

R. =Ry (M)R + P (M), 17)

wherep . are the interface left and right pressures and the polyrierﬁ(ij@ are

ﬁMﬂf(M) if M| > 1
P (M) = (18)

®)
M, (M)(x2- M ¥ 16aMM7(M)) otherwise

with & = 3/16.

4. A Jacobian matrix for AUSM *

The Jacobian matrix is calculated analytically by repeatgplication of the chain rule. The residual for one cell is
built up as a summation of the fluxes through the cell faceenTbonsidering the inviscid numerical flux, Eq. (8)

Oy _om., 0P on, 19)
6PL/R aPL/R 2 aPL/R al:)L/R

whereP is defined in equation (9).

4.1 Derivatives of the interface speed of sound

As hinted in the introduction the interface speed of sounttitical in the AUSM*. A good analytical Jacobian for
this scheme has to represent its dependencies as best #ddgpd3gferentiating expression (15), the presence of the
min/maxoperators leads to a dual formulation at the borderlineschiseg =3, anda’, ; = U, . it has to be noticed
here that the interface speed of sound is not representeddmtiauous function. While it is not an issue in computing

the numerical fluxes, the Jacobian should take into accterfbtlowing possibilities (see equation (15)):
e wheng = 3§, both the left and right state could be chosen byrttie/maxoperators to evaluagg,

e whena', , = +y, . the interface speed of sound could be either a function ditlyeocritical speeds of sound or
a function ofa’ ., and the normal velocities, ..
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Here we suggest a simple approach to deal with these siisatié/heng = g, anda’, ; = +y, ., we consider the
interface speed of sound derivative as in equation (20) ytegithe points of discontinuity, the average of the left and
right limits is used. With this choice we hope to consolidte stability of the scheme. This discussion led to the
following expression to evaluate the derivativeagf

g .
% if g >y,
2
forg <3, - = if g <y,
. 2 I
el EICRE | ILE SN
aa; -
m if % > —Ugr
forg >3 o & if a* < —
a > & P ~Ur & U
da,,
= #2 ) (20)
P aP(z/R [% (a}j + —aRR )] if g = —Ue
s (@va) ifa>y &a> -y,
10 (32 iz) f q_ &
forg =73, 2R (q“ " e HETTT
P & P _ &
%anL/R (aL * _LhR) i q— - Yhr
2 *2
b (ra)  ri=a
where
L S T N B 2 > 1
P aL*(y+1){ y-1p2° U, Vi, W, y-1g
0% _ 1 | v R 1
P a,;(y+1){ O A
(21)
oy
PN 0
3
=0



S. COLONIA, R. STEIJL AND G.N. BARAKOS

and

aun_-L — {O, Ny, Ny, Ng, O}

= ={0, n, n, n, 0}

uy, 0
8PR -
Mg 0
R -

T.
n= {nx, ny, nz} is the cell face normal.

4.2 Derivatives of the interface Mach number

From equation (11) follows

oM, _ IMI(M) M (M)

GPL/R oP . (9PL/R
where considering equation (13)
oM, T M
oY if M| > 1
M) L
aPL/R oM T ~(M
<2>( L)(l +168M,~(M)) - 168M,7 (M) <2>( Y otherwise
oM~
LY it Myl > 1
oM (M) e
P, ,
<2>(M*)(1 + 168M,(M,) + 168M,~(M,) & <2>(M*) otherwise

and

MM 1M o
oP, P

L/R 2 L/R L/R

M (M)

()

oP,

L/R

=+ (ML/R + 1) (9P

L/R

(22)

(23)

(24)

(25)

(26)

(27)
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with :P'\LALR’ 2'PM ‘, :F',V' . zL',\L"/Fi obtained from equations (12) taking in account equatiof$, (21), (22). It has to

be notic/:ed that the split Mach number polynomials, see E8), @re continuous functions and so result their deriva-
tives, Egs. (24) and (25).

4.3 Derivatives of the pressure flux

Finally regarding the pressure flux derivative, from equatil7)

P, _ 535('\") (5)(MR) b+
P, - P, o P (M) P (MR) 6PL,R (28)
where considering equation (18)
1 M (M) M (M) am .
|v|L 6(|13) (:BlZLL aPL/LR ifIM|>1
0P (M) oM (M)
() (2) L —

TL/R = (2 M -16aM M(z) M) - (29)

otherwise

5 (M) oM
<2) L
M, (M, )( L 160(M T2 - (ML)ﬁ))
1 M) (Mg) 3 My (MR) oM, .
MR R L/R M2R aPL/R If |MR| Z 1
M, ~ (M)
§>P(MR) B0 (2 - M, + 16MM, (M) - (30)
L/R
otherwise
d 0
M (M) (2 - 16222 + M (M) 325)

Also the derivatives of the fifth degree polynomials are cargus as the polynomials definitions (18).

5. Comparison of the AUSM* and Roe schemes

The geometry considered for the comparison is@chhie with a blunt nose of radilgs= 0.01L, whereL is the length

of the cone. Some results are compared also with a thedratipeoach and the correlation of [34], see table 1.

The AUSM™ predictions showed the best agreement with the theory anddirelation results. The agreement given
for the stagnation quantities is quite remarkable, thEedinces are less tharR@. The stand distance is slightly
under-predicted, about 7%. The Roe scheme, instead, gireespeedicted stagnation point quantities, 5% and 18%,
and an underestimated, about 15%, stéihdistance. Moreover, figures 1a and 1b show that the shockcpeddy
the AUSM™ present less spurious oscillations unlike the Roe schespecelly around the stagnation point.
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Table 1. Comparison of AUSM and Roe schemes with theory results and correlation [34].

Non-dimensional quantity | Method | Values
Stagnation AUSM * | 5,439

point Roe 5.716

p/P THEORY | 5,442
Stagnation AUSM * | 32.593

point Roe 38.5
P/ Peo THEORY | 32653

Standdf AUSM * | 0.152
distance Roe 0.128

§/RE [34] 0.163

aR, is the nose curvature radius

Mach Number Mach Number

Y/R

04 04

0.2 0.2

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 -0.2 0 0.2 0.6 0.8 1

0.4
X/R, X/R,
(@) AUSM* (b) Roe

Figure 1: Inviscid flow around a 2Fone with blunt noseR = 0.01L) at M = 5; fully-implicit.

6. Performance of the implicit scheme

In this section, a review of the performance of the impleradrimplicit AUSM * schemes is given. The inviscid flow
field around an infinite cylinder, as classical blunt bodyecaaerospace interest, has been considered. In order to
evaluate the maximum CFL numbers that can be runfégrént norm-of-the-error levels with the implicit scheme,
two different Mach numbers and grid refinements have been consideedine grid is obtained from the coarse by
halving the cell size in the transverse direction to the khdw the present work the following norm-of-the-error has
been used:

L(Rest > 0)
° (LZ(Rest = 0)) (1

Looking at figure 2a it can be claimed that the analytical Baoois well defined. For both Mach 3 and 5, and
grid refinements, the solver can run at a CFL numbers equabfaea even higher than the respective numerical Jaco-
bian. The numerical Jacobian is evaluated by second oraératéinite diferences. The slightly lower performance,
in terms of CFL, of the latter can be due to the fact that the interface spésdund definition, Eq. (15), does not
result in a continuous function and then it could pootfiat the numerical approximations of its derivative.

10
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[ 1 2 -3 -4 5 0 Kl 2 3 -4 4
Log. Residual Log. Residual
(a) Infinite cylinder, inviscid flow. (b) Orion CEV, laminar flowRe= 1 x 10°5).

Figure 2: CFL comparison: numerical and analytical JacobdJSM * with entropy satisfyingy,».

< An. Jac.

-1 — An. Jac. 4.5
= Num. Jac. ® Num. Jac.
o —RK4 (CFL = 0.90) 4.0 - u ¥ RK4 (CFL =0.90)
21 = 3.5 v
I £ \4
3 -25 g ™
P. = 3.0q v
g 3 g .
Q:. -3.5+ S 2.5 v
g o
5 | S 2.0 * *
a3 -4 S .
-4.5 1.5 *
-5 T T T T T T T T Y 10
750 1500 2250 3000 3750 4500 5250 6000 6750 7500 -1 -2 -3 -4 5 6
Iteration Log. Residual
(a) Residual vs lteration. (b) Time vs Residual.

Figure 3: Computational cost comparison: infinite cylinderarse grid, inviscid flow, AUSM scheme with entropy
satisfyingay 2, M = 3.

To evaluate the scheme behaviour for more complex casedrdaftow field around the Orion CEV has been consid-
ered. The grid used, shown in figure 6b of section 8, has aatpasiolution normal to the shock similar to the infinite
cylinder coarse grid. As it can be seen from figure 2b the icitpdcheme allows to run at least CFL numbers around
2.5 also in presence of the strong shocks, expansions andgtitars characterising the flow field around the Orion.
Regarding the computational time a series of test has bewtucted on a quad-core Xe@nCPU machine. Figures 3
shows some results for Mach 3. It can be noticed that the ticallyjacobian leads to a solver that is even two times
faster then the respective numerical one. This is due maintiie higher computationaliecency of evaluating an
analytical Jacobian compared to the numerical approaatpritparison to the explicit, 4-stage Runge Kutta, AUSM
the implicit scheme becomes 30% and 40% faster after theitbgaof the normalised residual has dropped-tb
and-2, respectively, due to the increased CFL numbers. Firaligmparison between the times needed to obtain a
solution for the infinite cylinder case, with a norm of theagrequal to—-7 has been conducted. The explicit, 4-stage
Runge Kutta, time marching with a CFL number 0 @eeded 19ninto obtain the solution. For the implicit method,
with the analytical Jacobian, two approaches have beerid=es. The first involved the 4-stage Runge Kutta till a
logarithm of the residual of1 and then the implicit scheme tili7 with a CFL equal to 5. In the second one, instead,
the explicit scheme tilt-2 and then the implicit method, with CFL of 3, tili7 have been used. In both latter cases, the
time to obtain the solution has been decreased tmib3and 11min, respectively. So, this comparison confirms that
the implicit approach is 36 40% faster than the fully explicit time marching.

7. Shock-waveg turbulent boundary-layer interaction test case

In [32] shock-wavéboundary-layer interactions, generated using two-dinoeas compression ramps, were studied
experimentally. The characteristics of the incoming baumgdayer weres = 24mm M., = 2.84,Re=6.5x10"m™
and diferent ramp angle have been considered. Among the resdtsutiies of the wall pressure along the recircula-
tion zones are presented.

11
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In this work, we solved numerically the same flow fields usihg 8ST model and the AUSMscheme. Figure
4a shows the comparison for the pressure curves, while inefigtb, 5a and 5b the Mach contours are presented for
two ramp angles.

Mach Number
2.84
2.48
213
1.77

-0.8 ‘1IO“ ‘2‘0““
X146 X/3

(a) Pressure curves fér= 16° andd = 20° ramp angles. (b) Mach contours a1 = 20°.

-1 -0.6 -0.4 40

Figure 4: SST, AUSM with entropy satisfyingy ,, M = 2.84,Re=65x10" m1.

The numerical solutions fit reasonably the experimental.datleed, the positions of the recirculation zones predict
by the CFD code are comparable to the ones given by the expetirfigures 5a and 5b confirm that the SST model
and the AUSM* scheme are able to capture the recirculation zones withsemeale level of reliability.

Mach Number Mach Number

2.84 2.84

08 2.48 2.48

2.13 2.13

1.77 1.77

1.42 1.42

, 1.06 1.06

w 0.71 0.71

~ 0.35 0.35
>

0.00 =

J

0.00
0.4

0.2

L 1 L L L
0.2 0.4

0 ‘ 0 —
X/8 X/ 3
(a)0 = 16°. (b) 6 = 20°.

Figure 5: Mach contours: SST, AUSMwith entropy satisfyingy >, M = 2.84,Re= 6.5x10" m1.

8. Orion CEV aerodynamic testing

As a final test for the solver, in this section the predictidrine aerodynamic cdicients of the Orion, figures 6a-
6b, are compared to the experimental results collected3h [Ref. [33] presented a summary of the experimental
static aerodynamic data of the Orion CEV. These data weteatetl during the wind-tunnel test program executed at
different facilities to support the development of the spadecra

12



IMPLICIT IMPLEMENTATION OF THE AUSM * SCHEME AND THE SST MODEL FOR HIGH SPEED FLOW

-,

ow

(a) From [33]. (b)

Figure 6: Orion CEV sketch, (a), and surface grid, (b).

In this work the results for the test case at Mach 3 and Regnbfix 10 have been used. As it can be seen from
figures 7a and 7b, the predictions given by the CFD code aredd ggreement with the experimental data. Indeed,
the relative diferences between the numerical and the experimental reseltot more than 3%.

059 1.6

= Murphy 2011
#+HMBvV2

0.4+ 1.54

0.3 144

CL

Q
Q
02 134 -=Murphy 2011
-+ HMBV2
0.1 T T T T 1 1.2 T T T T |
155 160 165 170 175 180 155 160 165 170 175 180
a o
(@) (b)

Figure 7: Orion CE\Cy, (a), andCp, (b): SST, AUSM" with entropy satisfyingy >, M = 3, Re= 1.5 x 10°.

The Mach contours at two angles of attack are presented iregga and 8b. It has to be highlighted that no shock
instabilities have been observed during the simulations.

9. Conclusions

In the first part of this paper we presented the derivationfafla analytical Jacobian for the AUSM scheme. Then,
the implicit scheme with the analytical Jacobian has bestederesulting to be faster than the same implicit scheme
with a numerically approximate Jacobian and a 4-stage Riiga method. This is due to the higher computational
efficency of evaluating an analytical Jacobian than a numeajgaioximation and the higher CFL number allowed by
the implicit approach. Additional improvements are stdkgible and further investigations will be conducted td-eva
uate possible simplifications that can be made to the analyacobian. The aim will is to improve the computational
efficency of the latter withoutfBecting the stability of the scheme. In the second part ofloik, the SST turbulence
model was employed together with the AUSMscheme, to solve shock-watabulent boundary-layer interactions
for three diferent shock angles. The results, compared to experimeatal showed that the SST model has been
able to capture the correct positions of the recirculatiomes. Finally, the SST model and the AUSNMcheme have
been employed in the prediction of some aerodynamificients of the Orion spacecraft. Again, the comparison with
experimental data has shown the reliability of the numéegparoach.

In future works the authors will focus on hybrid continytiimetic Boltzmann methods for partially rarefied flow, in
which the AUSM*-family fluxes will represent the basis for the continuumtpar
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Mach Number Mach Number
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Figure 8: Mach contours: SST, AUSMwith entropy satisfyingy,», M = 3, Re= 1.5 x 10°.
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