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Abstract

A semi-analytical model of a resonator ring composed of cylindrical ducts with reactive and dissipative
shell is extended to account for scattering and mode coupling of three dimensional acoustic waves at
duct junctions. A “mode-matching” method based on the weak conservation of mass and momentum in an
integral sense across the interface by application of the Galerkin approach is used. The method is validated
against FEM data of a test case available in the literature. A representative resonator ring used in rocket
chambers is also studied. Scattering into higher radial evanescent modes is clearly observed close to the
eigenfrequency of the cavities.

1. Introduction

Due to a possible feedback between heat release and acoustics, rocket engines are prone to thermo-acoustic instabilities.
Because energy density and efficiency of modern engines are extremely high, the resulting high frequency oscillations
can lead to severe anomalies of motor performance and even to the destruction of the thrust chamber in a very short
time. Acoustic cavities, so called resonators, are commonly attached to the chamber in order to increase the acoustic
losses and thus the stability of the engines. Figure 1 shows a generic thrust chamber with acoustic cavities of the quarter
wave type arranged into a resonator ring. It is generally assumed that dissipation of acoustic energy close to the cavity
mouths by turbulent losses and along the cavity walls by viscous forces are responsible for the stabilizing influence
of resonators. Furthermore, the acoustic field of the chamber interacts with the backing volume of the cavities. In
the framework of this project, a three dimensional model that describes the propagation of acoustic waves through
resonator rings has been already proposed [1, 2].

The resonator ring is modeled as a cylindrical duct with finite shell impedance, which describes the effects of
the cavities. The stabilizing influence of resonators due to dissipative losses has already been corroborated in a generic
thrust chamber modeled as a network of low order acoustic elements using the afore mentioned resonator ring element
[2]. However, the scattering of acoustic waves at the interface between two duct sections of different shell impedance
has been neglected until now. When reaching a discontinuity in the shell boundary, e.g. a jump in shell impedance,
acoustic waves will be partially transmitted and partially reflected, especially at frequencies where the cavities are
strongly reactive. To account for these effects, the previously mentioned model of the resonator ring is extended to
allow such scattering.

In the literature, especially for the optimization of liners used in aeroengines for suppression of noise, several
mode matching approaches and discussion on the validity of them can be found [3]. A classical approach used by
several authors is to match acoustic pressure and axial velocity at the discontinuity plane in a weak sense [4]. As
will be shown in this paper, this is a valid approximation only for cases with vanishing mean flow. For configurations
where surface waves, e.g. modes with oscillations only close to pressure release surfaces (z =~ i) [5], more accurate
approaches exist, which are capable of handling the discontinuity at the leading trailing edge. It is not trivial to
determine the direction of propagation of these surface modes, because they may appear as an hydrodynamic instability.
In this case, a method based on the Wiener-Hopf technique is proposed by Rienstra [6]. However, as pointed out by
Rienstra, in the majority of engineering problems the acoustic impedance at the shell is high enough and surface waves
do not usually appear. In those cases, mode matching techniques are well suited.

The paper is organized as follows: first, the resonator ring model will be reviewed before showing the derivation
of the so called “mode-matching” technique at the interface between duct sections of different shell impedance. A
test case of a circular duct with a segment of finite shell impedance is defined and characterized. For non-reflecting
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boundary conditions a solution procedure based on the scattering matrix is given, that describes the propagation of
three dimensional transverse waves along the system. A first test case configuration that represents a turbofan inlet is
used to validate the method against FEM data available in literature. A second test case configuration that reproduces
a representative resonator ring element as used in rocket thrust chambers is finally studied. Consequences of scattering
on the stabilizing influence of resonator rings are then discussed.

2. Acoustic field in cylindrical geometries with arbitrarily shell boundary condition

In the presence of a uniform mean flow ¥, = [Up,0,0]” in axial direction, assuming constant speed of sound cy and
neglecting viscous dissipation, the propagation of acoustic waves in cylindrical ducts with arbitrarily hard or reactive
and dissipative shell can be studied by solving the linearized, three-dimensional, convective wave equation for the
fluctuating pressure p’:
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Assuming harmonic time dependency and separation of variables, the general solution in cylindrical coordinates can
be written as:
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which can be interpreted as three dimensional waves or “modes” of tangential and radial order m and n traveling in the
upstream “f”” and downstream “g” direction, respectively. The characteristic amplitudes F,,, and G,,, give information
about the relative local sound pressure level. The radial wave numbers «,, determine the transverse mode shape,
while the axial wave numbers &, describe their axial propagation. Both wave numbers are linked to each other by the
dispersion relation:
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where R, is the duct radius and M = Ujp/cy the Mach number. The radial wave numbers depend on the boundary

condition on the cylinder shell. In the presence of mean flow and knowing the impedance of the cylinder shell Z(w),
they can be determined from Myers’ boundary condition [7]:
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by substituting the general solution of the pressure Eq. (2). For details about the method used to solve this complex
valued transcendental equation, refer to [2]. In the hard-wall case the radial velocity fluctuation vanishes v' = 0l,=g,
and thus Z(w) — oo, the radial wave numbers are purely real valued and frequency independent. Furthermore, the
upstream and downstream traveling wave have equal mode shape even in the presence of mean flow:
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where A4,,, correspond to the roots of the Bessel function derivative. At frequencies beyond the “cut-on” value:
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the imaginary part of the axial wave numbers vanishes and the transverse mode starts to propagate. For lower frequen-
cies the mode is evanescent and the modal amplitude decays exponentially along the axial direction.
In the soft-wall case with a reactive and dissipative shell of finite impedance Z(w), the radial wave numbers are
complex valued, frequency dependent and generally different for the positive and negative direction of propagation:
an *a,, = fw) eC. @)
From the linearized momentum equation, the velocity fluctuations can be determined. Introducing the abbrevia-
tions
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Figure 2: Equivalent specific impedance
Figure 1: Resonator ring in generic rocket of a resonator ring homogenized over a
thrust chamber. portion of the cylinder shell.

they can be written in terms of the characteristic amplitudes f and g:
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2.1 Resonator ring model as a soft-wall cylinder

Following a well known technique for linings in aeroengines [8, 4], a resonator ring in rocket thrust chambers can be
modeled as a cylindrical duct segment with dissipative and reactive shell boundary of equivalence impedance Z.,(w)
as shown in Fig. 2. The method has been already introduced and successfully tested [2] for the application of stability
prediction in rocket thrust chambers. The dissipation of acoustic energy in the region enclosed by the resonator ring
leading to improved stability has been corroborated. However, all effects occurring at the transverse planes where the
resonator ring is connected to the rest of the chamber like reflections and mode coupling were not taken into account.
In this paper, only the key features of the afore mentioned derivation will be reviewed and the focus will lie on its
extension to account scattering and mode coupling at the discontinuity planes.

The starting point is the characterization of a single resonator in terms of its acoustic impedance at the cavity
mouth. An expression proposed by Laudien et al. [9] is used in this study:

’
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where the real part or “resistance” ® accounts for the dissipation, while the imaginary part or “reactance” ¥ describes
the phase shift or time delay. Dissipative effects due to linear viscous forces and turbulent non-linear losses are taken
by the resistance into account. At high pressure levels, the non-linear losses dominate and these are modeled, due
to the lack of an accurate global model, by an experimentally determined coefficient €, [10]. The resistance length
matches the geometry of the experiment with that of quarter tubes. For the reactance analytical expressions exist for
simple geometries. The effective length of the cavities I, = /. + 6] accounts for the the portion of gas taking part in
the oscillations. According to Munjal [11], it can be estimated as 6/ ~ 0.85d, where d is the cavity diameter. For
simplicity the classical case with homogeneous properties inside the cavity and average speed of sound ¢ is given here.
The eigenfrequencies of the cavities are thus given by the expression

fR=(2n—1)4il . n=1,23... (13)
For an array of ng resonators placed in parallel into a ring, the equivalent homogeneous specific impedance is
readily obtained as [9]:

1
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where the individual local impedances Z; are weighted by the free field impedance pc and the local reaction area A;
and the equivalent impedance by the total area A,.; = 2nR.d = ), A;. Because the portion of the shell with hard
boundaries has an infinite impedance (wall-normal velocity is here zero), their effect is inherently taken into account
by the weighting area A,.r. This procedure corresponds to averaging the impedance over the cylinder shell area as
shown in Fig. 2.
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Using this equivalent impedance as boundary condition in the previous analysis, the propagation of three dimen-
sional waves through resonator rings can be described. In [2], as a first approximation, the scattering of acoustic waves
at the connecting planes between hard- and soft-wall segments has been neglected. As it will be shown in Sec. 4.3 for
strong reacting cavities, it actually has to be taken into account. The extension of the model to account for these effects
is the aim of the next section.

3. Modal scattering at a shell impedance transition

The expressions presented in Sec. 2 describe the propagation of acoustic waves in segments with homogeneous shell
impedance. Due to linearity, the solution may be represented as a summation over modes, which are independent from
each other. At a discontinuity caused, for example, by connecting two duct segments of different shell impedance, a
relation between the characteristic amplitudes F,,, and G,,, on both sides of the connecting plane is needed. For the
application of resonator rings in rocket thrust chambers we are mainly interested in the scattering at a plane connecting
a hard- to a soft-wall duct segment and vice versa. However, the method presented here can be applied to a connecting
plane of arbitrary impedance, e.g. two resonator rings equipped with different cavities.

a) No scattering b) Scattering, no mode coupling c) Scattering, mode cpupling

Figure 3: Sketch of three different approaches for the description of a jump in wall impedance.

Consider a cylindrical duct of radius R, with a discontinuity in the wall impedance at axial position x = 0 shown
in Fig. 4. The left part of the duct, x < 0, has a hard wall at which the radial acoustic velocity vanishes v'(r = R.) = 0.
The shell of the right part of the duct, x > 0, is characterized by a frequency dependent impedance zz = f(w) and
thus, the radial velocity does not necessarily have to be zero. Mode shapes and axial propagation are determined in
each segment by the method described in Sec. 2. To close the problem, the characteristic amplitudes F’ RIL and GRIE of

Figure 4: Control volume enclosing a discontinuity in shell impedance.

the corresponding waves on the left and on the right of the discontinuity at position x = 0 are needed. This procedure
is usually called “mode-matching*. Figure 3 shows three approaches of increasing complexity. In the simplest one,
a), all scattering is neglected and an incoming wave is just transmitted. For cases in which the radial wave numbers
differ only slightly between the two connected regions, this is a reasonable first approximation. Approach b) allows
some scattering, i.e. transmission and reflection, but only in the mode order of the incoming wave. In the more
general case, approach c), scattering into different mode orders may occur, too. In this study, we will handle with
the last mentioned general case following the linearized mode-matching technique already proposed by Gabard and
Astley [12] that preserves mass and momentum across the discontinuity. However, we will start the derivation from the
conservation equations in integral form.
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3.1 Integral mode-matching

We use here the approach proposed by Gabard and Astle [12]. The basic idea is to derive an expression that preserves
mass and momentum in an integral sense across the connecting plane. A control volume enclosing the discontinuity is
defined, see Fig. 4. The conservation equations for mass and momentum in integral form are the starting point for the

derivation:
ap S8
fffEdV+fopv-dS,v=0, (15)
v S
0
14 Y Si

where the summation over surface integrals considers the cylinder shell and the two inflow and outflow planes with
surface normal vectors dS L = [rdrdd,0,0]" and ds 1 = [0,R. db dx, 0]” in cylindrical coordinates, respectively.
Linearization upon a mean flow state with p = pg + p’, p = po + p’, and ¥ = ¥y + V" = [Up,0,0]” + [«’,v',w’']" and
using the isentropic expression p’ = p’ /c% allows to write the mass conservation Eq. (15) as:

2n R. +€/2 27 R, 2 +e€/2

ffflw—rdrdxde + ff(poU0+pou +U0—]rdrd6 fprVR dxdg = 0 , (17)
€
0

0 —€/2 0 —€/2
where only first order terms are considered. The brackets represent subtraction of the borders [a]f = ag® — a® and the
superscripts ® and £ denote values at axial positions x = +€/2 and x = —€/2, respectively. Due to axial symmetry,
the integrals in the azimuthal direction can be canceled out. Furthermore, Since there is no discontinuity for the mean
quantities over the connection plane, the first term in the brackets poUy vanishes. In the presence of mean flow, the
impedance boundary condition given by Myers [7]:

- (1 _iﬂﬁ)(l’_') , (18)

has to be used to evaluate the surface integral on the cylinder shell:
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The last term in the previous equation can readily be evaluated as [—ipyU) f P /(wZ)dH]’z. Following the compact
approach of Gabard and Astley [12], the limit of Eq. (19) as € — 0 is then considered. The first and third terms vanish
and, as pointed out in [12], additional terms appear at interfaces with finite impedance Z # co. However, at this limiting
case and due to the discontinuity caused by the different mode shapes across the jump, the conservation equations can
only be weakly fulfilled. Following the Galerkin approach, the integral equations are weighted by a continuous function
Y(r, 0):

2 R. R
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where the axial Mach number M = Uy/cy is also used. Applying the same series of principles to the conservation of
momentum yields after some rearrangement to:

2% R. ) 2 R
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Again, additional terms at interfaces with finite impedance arise. However, these can be replaced by substitution of
the mass conservation Eq. (20) into Eq. (21). The three components of the weak form of the linearized momentum
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equation can be finally written as:

2n R, , R
ff‘{’(Mu'+ )rdrd9 =0,
PoCo
0 0 1
2 R, 1R
f‘PMv'rdrdH =0, (22)
I
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At this point, it is convenient to make a distinction between the case with and without mean flow. In the absence
of mean flow, the conservation equations for the compact element simplify into:

2 R. R 27 R. ) R

ff‘l’u’rdrd@ -0 ff P =0, (23)
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with two relations for the sets of two unknowns. They correspond to the matching of pressure and axial velocity widely
used in literature.

In the presence of axial mean flow the linearized momentum conservation equation delivers two additional re-
lations for the characteristic amplitudes. We have four relations for two unknowns: one from Eq. (20) and three from
Eq. (22). This means that for the general case with mean flow and taking care only of mass and momentum, the prob-
lem is overdetermined. To overcome this issue only the axial component of the momentum conservation Eq. (22) is
considered. Up to first order, mass conservation inherits acoustic energy conservation, too. Concerning the acoustic
intensity I = u’p’, which is second order in magnitude, additional relations are thus needed. The physical interpretation
and the evaluation of the effects neglected by taking only the axial term is part of ongoing research.

Substitution of the general solution Eq. (2) in the chosen set of equations delivers the relations between the
characteristic amplitudes on both sides of the jump. The temporal dependence e cancels out. Because of linearity
and due to the axial symmetry, the tangential modes can be treated independently (the impedance is constant over the
6-coordinate). This means that no scattering into different tangential mode orders will occur. Furthermore, without
loss of generality, the axial position x = O is used. In practice, only a finite number of N, radial modes can be taken
into account. The problem has thus 2 X N, unknowns, the F, R/ L and G%L characteristic amplitudes on both sides of
the discontinuity. The Galerkin approach using an orthogonal set of N, weighting functions ¥,,, withv =0, 1,..., N,
is used to close the problem. Note that the radial and axial wave numbers have different values on the left and on the
right side of the connecting plane. To distinguish them, the soft-wall case will be denoted by a * superscript. The radial
mode shapes of the hard-wall case build an orthogonal set and it is convenient to use them as weighting functions
W,y = J(Amyt). This leads to the following system of 2N, equations:
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The integral terms can be evaluated analitically:

R. 2
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In matrix form notation and using the vectors § = [F0, Gimo» Fint> Gmls - - » FmN,,GmN,]T on the hard-wall side and
q = [F}0: G FrgsGrgs oo vs F;N'_, G;N'_]T on the soft-wall side they can be written as:
Q7=Qq . (28)
with matrix entries:
02v-1.2n-1) =LKy, M+ 1), O0Qv—1,2n) = {u(K,,M + 1), (29)
02v,2n = 1) = LKy, + M), QQ2v,2n) = LKy, + M) (30)
and:
. McoR, .
O'@v-12n-1) =, KmM+1) — i “0 I Ay R) Iy R,) (€29)
McoR, o
O'2v—-1,2n) = (K, M+ 1) — i €0 Iy R) I, Re) (32)
O'2v,2n-1) =Lk M+ 1), (33)
Q" (2v,2n) = o7 (kK6 M + 1) (34)

Due to the orthogonality of the weighting functions, the matrix Q is diagonal. Using this notation, the transfer matrix
of a jump in shell impedance can be finally expressed in terms of these two matrices. For the jump from the hard-wall
into the soft-wall, the transfer matrix is T;; = Q~'Q*. For the jump in the opposite direction the transfer matrix is

Ty =(Q)™'Q.
4. Application

4.1 Test case configuration

For validation of the method proposed, a test case configuration shown in Fig. 5 is used. It consists of a soft-wall duct
segment of length L and radius R with specific shell impedance z., and connected to two hard-wall segments of length
1, each. The duct has a uniform flow of Mach number M and free field impedance pycy. The inlet and outlet boundaries
are ideally set as non-reflecting. Furthermore, the system can be excited at position x = 0 with a forward traveling
wave of arbitrary mode order f,,,. In the linear case, the system can easily be characterized by quasi one-dimensional

fmn R
ANNH
Non- Non-
reflecting reflecting
P J
1 6

Figure 5: Test case configuration and characterization.

discrete elements, that link the characteristic amplitudes F,,, and G, at connecting planes. Since the geometry is
axis-symmetric, each tangential mode order can be treated separately. Using the transfer matrix notation, each element
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is mathematically described by a matrix T, that relates the amplitudes of the acoustic waves at positions a and b for
given tangential mode order m:

me me
&m0 &m0
| =Tw| | . (35)
fmn fmn
8mn b 8mn a

The advantage of this acausal notation, e.g. inputs and outputs of the system are not distinguished, is that the whole
system can simply be built by multiplication of the individual transfer matrices:

Tis = Tse Tas Tas Toz T1o (36)

where the indices 1 to 6 corresponds to the axial locations given in Fig. 5. For the three duct segments, the matrices are
diagonal with exponential entries given by the corresponding axial wave numbers and segment lengths, respectively:

e~ kol 0 ... 0 e~ koL 0 .. 0
0 okl : 0 e KoL :
Ti=Tse=| - ;o Taa=| . @3N
. e—ikf;,,ll 0 ' e—ik,’jf,,L 0
0 . 0 e k! 0 . 0 e kL

For the jumps at the connecting planes, the matrices presented in Sec. 3.1 are used. In the general case, the previously
mentioned matrices relate all radial orders in a tangential mode to each other. In practice, depending on how many
radial modes are considered in the coupling, they are 2N, X 2N, square matrices.

Physically, the scattering matrix notation offers a more descriptive characterization of the problem that preserves
causality. In this case, the system is described by a matrix S,;, that relates the incoming to the outgoing waves at
positions a and b:

me,b me,a [2 X 2]0_)0 ce [2 X 2],1_)0 me,a
8m0,a 8m0,b %2 . 8m0,b
: — Sab — [ X ]04)1 . ; (38)
fmn,a f mn,a : B f mn,a
Emn,b out mn,b in [2 x 2]04”[ [2 x 2]”H" mn,b in

The scattering matrix can be divided into [2 X 2] sub-block matrices that allow a physical representation of the different
entries. Each sub-block represents the coupling between two radial mode orders as shown by the arrows in the indices.
Thus, for each sub-block, the diagonal entries represent transmission, while the off-diagonal elements reflection from
and into the corresponding radial orders of the up- and downstream traveling waves. As an example consider the
coupling of the radial order n = 0 into order n = 1:

T R
[2 X 2]om1 = [ 0-1 0_—’1} . (39)
RO—>I TO—»]

For the test case given in Fig. 5 with non-reflecting boundaries, the scattering matrix Si¢ gives the response of
the system to the single mode excitation. The input vector has a single non zero entry f,,,,. for the chosen mode order.
Knowing the response of the system at position 1, the amplitudes at the remaining locations 2 to 6 can be calculated
using the individual transfer matrices. However, it is not trivial to derive the scattering matrix of a system from the
individual element matrices. In this paper, a method based on matrix manipulation is used.

We start by expressing the state vector at position 6 in terms of incoming ¥, and outgoing X,,, vectors:

Jmo (1 0 0 O](fmos) [0 O 0 O](fmo,
8mo 0 0 gmo1| (0 1 8mo.6
1 0
= ; A Al |- (40)
0 1
fmn 0 1 O fmn,ﬁ O O 0 fmn,l
8mn 6 ,0 e 0 O 8mn,1 0 0 1 8mn.6
S—— S~——
E! Fout E? Xin
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Table 1: Geometrical and thermodynamical parameters of the test case.
R[ml Llml [[m] colm/s] polkg/m®] fops [Hz] hm] my[-]
1 0.8 0.15 340 1.2 1680 0.035 24

Doing the same for the state vector at position 1, we can write the transfer matrix notation as:
Elfout + Ezfin = T16(Elfin + Ez)?out) . (41)
After some rearrangement, the scattering matrix notation is given by:
> _ 1 25\—1 1 2\ 2
Your = (B =Tig E) (T1s E —E)%, . 42)

This method can be applied for any transfer matrix. However, the inversion of the matrix given by expression (E! —
Tis E*)~' can be mathematically difficult if the transfer matrix is ill-conditioned. This can happen for systems in
which some radial orders are highly evanescent. Thus, the number of radial mode orders considered for the analysis is
restricted by the accuracy of the method used for matrix inversion.

4.2 Validation: noise suppression in aeroengines

To validate the mode matching method proposed in this paper, a test case configuration given by McAlpine et al. [8] is
used. Table 1 list the geometrical and physical properties of the configuration. It corresponds to the inlet of a turbofan
engine equipped with partial lining for noise suppression. McAlpine et al. assumed that the system is excited by the
rotor-alone mode of tangential order m = m;, and n = 0 at a frequency equal to the blade passing frequency f;,:

0 = [Acsldu(Anor/R)e™ et (43)

mp0

The specific acoustic impedance of the lining (soft-wall duct segment) is given as:
Zlin = 3- iCOt(/’lO)/C()) . (44)

In their study, they simulated the acoustic field excited at the blade passing frequency using the finite element code
ACTRAN/AE'.

We solved the same system using the mode matching method and solution procedure proposed in this paper
and compare them against the FEM analysis of McAlpine et al. Figure 6 and 7 show the radial distribution of the
normalized acoustic pressure at the axial positions of the two jumps in shell impedance, respectively. The distribution
given by the FEM analysis is compared against the two distributions just up- and downstream of the jumps given by the
mode matching technique considering N, = 6 radial modes in the coupling. On most of the regions good agreement
can be seen. Only close to the boundary at position r ~ R some discrepancies arise. However, this is in accordance to
the mode matching technique, which allows local discontinuities across jumps in order to satisfy the radial boundary
condition. On the hard-wall side it can be seen that the radial gradient is zero leading to zero radial velocity. In contrast,
on the soft-wall side the gradient is not zero.

Figure 8 shows the normalized wall pressure distribution along the axial direction. The agreement with the FEM
data is also good in most of the regions. The biggest discrepancies are located close to the first jump. However, as
already seen in the radial distributions, these discrepancies concentrate in the vicinity of the shell boundary.

4.3 Representative resonator ring

We now continue with the application of the mode matching technique to a resonator ring modeled as soft-wall sec-
tion with homogeneous equivalent shell impedance given by Eq. (14) and Eq. (12). The test case characterized in
Fig. 5 is used again but choosing parameters representative of modern rocket thrust chambers. Table 2 gives the non-
dimensionalized parameters for both the equivalent impedance and test case configuration.

The requirements on resonator rings for stabilization of rocket thrust chambers are considerable different com-
pared to those on linings in turbofan engines. Firstly, the relevant tangential mode orders are much lower. Most
chambers are prone to instabilities of the mode orders m = 0 and m = 1. Secondly, the resonant frequency of the
coupled system is in general not known a priori. It may even change during operation. Thus, resonator rings should
work not only for one definite frequency, but rather within a frequency range.

!Free Field Technologies S.A., http://www.fft.be
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Figure 6: Normalized acoustic pressure at axial position Figure 7: Normalized acoustic pressure at axial position
x = [. Full line: FEM distribution from [8]. Dashed lines: x = [+ L. Full line: FEM distribution from [8]. Dashed
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Figure 8: Normalized acoustic pressure at the wall for » = R. Full line: FEM distribution from [8]. Dashed line: mode
matching considering N, = 6 radial modes for the coupling.

The frequency dependent scattering matrix describes the response of the resonator to traveling waves in the
frequency range of interest. As already mentioned in Sec. 4.1, the scattering matrix of a soft-wall duct segment can
be divided into [2 X 2] sub-blocks that describe the mode coupling in terms of transmission and reflection coeflicients.
However, radial modes are in most of the cases cut-off and are thus present only close to impedance discontinuities.
The first column of sub-block matrices describe the coupling of the f,,o and g,,0 waves into higher radial orders f,0_n,
and 8m0...N, -

Figure 9 shows the transmission and reflection coefficients of the scattering matrix for the tangential mode order
m = 0. Only the first three [2 X 2]y, sub-blocks of the first column are shown, n = 0 to n = 2. They correspond to the
coupling of the plane wave to higher radial modes. The frequency is non-dimensionalized by the resonant frequency
of the cavities fr = c¢/(4l,). As expected, close to the eigenfrequency of the cavities, the resonator ring reduces the
transmission coefficients and at the same time increases the reflection. Furthermore, scattering into higher radial mode

Table 2: Parameters used in the resonator ring test case. For generality, quantities are given in non-dimensional form.
€ /R LJR. d/R. ¢/c ng M L/R I/R
40 0205 0.571 0.089 0.654 22 025 0.089 0.022
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orders is also clearly observed. This is because at this frequency the mode shapes in the soft-wall segment differ more
strongly from those of in the hard-wall section. As expected, the contribution of the diagonal elements is biggest.
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Figure 9: First column of sub-blocks from scattering matrix, tangential mode order m = 0.

As seen in Fig. 10 the behavior is considerably different for the first tangential order m = 1. For this mode the
cut-on frequency corresponds approximately to the eigenfrequency of the cavities fi;,/fz ~ 1. Again, the first three
sub-blocks of the scattering matrix are shown. Coupling to higher radial modes is also seen in this tangential order,
however not as strong as in the plane wave case. The transmission of the acoustic waves with radial order n = 0 has
a peak at frequencies slightly lower than the eigenfrequency of the cavities. At these frequencies the tangential mode
is still cut-off. Nevertheless, the peak reaches values larger than unity, suggesting that the propagation of the wave is
actually enhanced by the resonator ring. The reflection coefficients are also high in this frequency range. At yet higher
frequencies the resonator rings start to reduce the amplitudes of the traveling waves. However, it is not totally clear
at the time of writing this paper how the additional pressure level is generated. A remaining question is whether this
behavior is actually physical or is rather a sort of singularity of the mode matching technique. The assessment of this
issues is part of the ongoing research.
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Figure 10: Tangential mode order m = 1.
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5. Conclusions and future work

A previously proposed resonator ring element composed of cylindrical duct segments with reactive and dissipative
shell boundary, has been extended to account for scattering and mode coupling of three dimensional acoustic waves
at duct junctions. Taking mean flow into account, the conservation of mass and momentum is weakly fulfilled up to
first order in an integral sense using the Galerkin approach. For a generic test case of a turbofan inlet equipped with
partial lining, the method is validated against FEM data available from the literature. For the test case considered, the
agreement is very good and the mode matching method is able to reproduce the pressure distribution.

The scattering matrix of a representative resonator ring as used in modern rocket thrust chambers is subsequently
studied. A wave reaching the resonator is partially transmitted and partially reflected at the interfaces between duct
segments of different shell impedance. Furthermore, a mode coupling mechanism appears, which transfers acoustic
energy into higher mode orders, especially if the acoustic mode shapes in the resonator ring differ strongly from their
hard-wall duct counterparts. The consequences of this mode coupling are not necessarily straightforward and depend
actually on the tangential mode order considered.

For the tangential order m = 0, close to the eigenfrequency of the cavities fz, the propagation of plane waves
is clearly diminished. This can be attributed to the resistance or real part of the impedance expression used as shell
boundary condition, which inherits the viscous and turbulent dissipation losses caused by the cavities. These losses
can directly contribute to the stabilization of the thrust chamber. At the same time, reflection into higher radial mode
orders occur.

In contrast, for the tangential order m = 1, two regions arise with opposite response. At frequencies below
cut-on, the propagation of the acoustic waves is enhanced by the influence of the resonator. Reflection into radial
modes of higher order also occurs, however, not as strong as in the plane wave case. It is not until frequencies beyond
cut-on where the propagation of waves is reduced. The physical interpretation of this ambivalent behavior is not totally
clarified yet. While some instabilities at the interface might be responsible for this behavior, it still has to be verified
whether this effect is not caused by a singularity in the mode matching technique. The answer to these questions is part
of the ongoing research.

The extended resonator ring element can be applied in a complete stability analysis of the thrust chamber taking
the major driving and damping mechanisms into account and using the network element method as proposed in [2].
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