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Abstract
Vibrational relaxation rates are studied within the framework of the Chapman-Enskog method for strongly
non-equilibrium multi-temperature flows in the zero-order (non-viscous) and first-order (viscous) approx-
imations for binary mixtures of air species. A modified version of the commonly used Landau-Teller
formula is proposed, and comparisons are made with strict kinetic theory calculations. The influence of
cross-coupling between dissociation and different slow VT transitions, along with the influence of veloc-
ity divergence on the vibrational relaxation rates are considered for N2 and O2 molecules with harmonic
vibrational spectra for various ratios of the vibrational and translational temperatures. The limits of appli-
cability of simplified expressions such as the original and modified Landau-Teller formulas are discussed.

1. Introduction

Vibrational relaxation rates are required for the solution of the fluid-dynamic transport equations of thermally and
chemically non-equilibrium gas flows. Although a number of models for rates of slow processes in non-equilibrium
flows have been developed, they are usually unsuitable for strongly non-equilibrium flows. For reacting viscous flows
it is known1–4 that cross-coupling between various slow processes (such as chemical reactions and vibrational energy
exchanges) arises, however, most existing models of cross-coupling (such as CVDV5 and CVCV6) are semi-empircal
and applicable only to inviscid flows. Therefore, it is of interest to study relaxation rates in viscous flows and estimate
the conditions under which simpler models which do not account for flow compressibility and cross-coupling can be
used without sacrificing accuracy, and where more strict approaches are needed.

Based on a strict kinetic-theory approach to computation of rates of slow processes in viscous flows,7 a simplified
method for calculating relaxation rates in multi-temperature flows of harmonic oscillators is developed in the present
paper, and the validity of the commonly used Landau–Teller formula describing rates of VT relaxation is investigated
for flows with coupling between dissociation and vibrational energy transitions.

1.1 Governing equations

We consider a mixture of molecular and atomic species, accounting for the rotational and vibrational energies of the
molecules. The vibrational spectra of the molecules are taken to be harmonic, that, is, the vibrational energy εc

i of
vibrational state i of a molecule of species c, when counted from the first level, is given by

εc
i = hνc = iεc

1, (1)

where h is the Planck constant and νc is the species-dependent frequency.
We consider flows with the following relation between characteristic times of microscopic collisional processes:

τtr < τrot < τVV ≪ τVV ′ < τVT < τreact ∼ ϑ, (2)

where τtr, τrot, τVV , τVV ′ , τVT , τreact are the characteristic times of elastic collisions, rotational energy exchanges, VV
exchanges of vibrational energy between molecules of the same species, VV’ exchanges of vibrational energy between
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molecules of different species, VT transitions of vibrational energy into translational, chemical reactions, and ϑ is the
gas-dynamic time.

The Boltzmann equation for flows with internal degrees of freedom with both rapid and slow processes takes on
the following form

∂ fci j

∂t
+ uc · ∇ fci j =

1
ε

Jrap
ci j + J sl

ci j, (3)

where fci j is the distribution function of particles of species c at the i-th vibrational and j-th rotational levels, uc is
the velocity of particles of species c, Jrap

ci j and J sl
ci j are the integral operators of rapid and slow processes, respectively,

ε = τVV/ϑ is the small parameter in which the distribution function is expanded in the generalized Chapman–Enskog
method.

Under condition (2), a multi-temperature approach can be used.8, 9 The set of macroscopic parameters for such
flows, assuming the harmonic oscillator model, is defined via the distribution functions, and is as follows:

nc =
∑

i j

∫
fci jduc, c = 1, . . . , L, (4)

ρv =
∑
ci j

∫
mcuc fci jduc, (5)

ρcEvibr,c =
∑

i j

εc
i

∫
fci jduc, c = 1 . . . , Lm, (6)

ρU =
3
2

nkT +
Lm∑
c=1

ρcErot,c +

Lm∑
c=1

ρcEvibr,c +

L∑
c=1

ρcE f ,c =
∑
ci j

∫ (
mcc2

c

2
+ εc

j + ε
c
i + εc

)
fci jduc, (7)

Here nc is the number density of particles of species c, v is the flow velocity, ρ is the mixture density, U is the total
energy per unit of mass, ρc is the density of particles of species c, L is the number of chemical species in the mixture,
and Lm is the number of molecular species, cc = uc − v is the peculiar velocity of a particle of species c, εc is the
formation energy, Erot,c, Evibr,c , E f ,c are the specific rotational, vibrational and formation energies of molecular species
c.

Given the above conditions, the transport equations take on the following form:9

dnc

dt
+ nc∇ · v + ∇ · (ncVc) = Rreact

c , c = 1, . . . , L, (8)

ρ
dv
dt
= ∇ · P, (9)

ρ
dU
dt
= −∇ · q + P : ∇v, (10)

ρc
dEvibr,c

dt
+ ∇ · qvibr,c = Rvibr

c − Evibr,cmcRreact
c + Evibr,c∇ · (ρcVc), c = 1, . . . , Lm, (11)

where Vc is the diffusion velocity of particles of species c, P is the stress tensor, q is the energy flux, qvibr,c is the
vibrational energy flux of species c. The set of governing equations (8)–(11) includes conservation equations for the
momentum and total energy (9), (10) coupled to the equations of multi-temperature chemical kinetics (8) and relaxation
equations for specific vibrational energies Evibr,c.

The transport terms in equations (8)-(11) Vc, P, q, qw,c are defined by the following expressions:

ncVc =
∑

i j

∫
cc fci jduc, (12)

P = −
∑
ci j

∫
mccccc fci jduc, (13)

q =
∑
ci j

∫ (
mcc2

c

2
+ εc

j + ε
c
i + εc

)
cc fci jduc, (14)

qvibr,c =
∑

i j

εc
i

∫
cc fci jduc. (15)
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The relaxation terms are defined as follows:9

Rvibr
c =

∑
i j

εc
i

∫
J sl

ci jduc = ε
c
1Rw

c , Rreact
c =

∑
i j

∫
Jreact

ci j duc, (16)

where Jreact
ci j = J2⇄2

ci j + J2⇄3
ci j is the collision operator for chemical reactions.

The integral operator J sl
ci j can be split into separate operators corresponding to specific slow processes (for each

specific process r, the pre- and post-collisional vibrational levels and chemical species of the colliding particles are
considered fixed)

J sl
ci j =

NVV′∑
r=1

νr,ciJ
VV ′,r
ci j +

NVT∑
r=1

νr,ciJ
VT,r
ci j +

N2⇄2∑
r=1

νr,ciJ
2⇄2,r
ci j +

N2⇄3∑
r=1

νr,ciJ
2⇄3,r
ci j . (17)

Here, NVV ′ , NVT , N2⇄2, N2⇄3 denote respectively the amount of VV’–exchanges, VT transitions, chemical exchange
reactions and dissociation-recombination reactions occurring in the mixture; JVV ′,r

ci j , JVT,r
ci j , J2⇄2,r

ci j and J2⇄3,r
ci j are the

operators for the r-th VV’-exchange, VT transition, chemical exchange and dissociation reactions, correspondingly;9

νr,ci are the global stoichiometric coefficients for the r-th transition. Based on this representation, the rate of a specific
reaction r is introduced :7, 10

ξ̇r =
1

Na

∑
j

∫
Jr

ci jduc (18)

and the corresponding reaction rate coefficient:

kr = Na

∑
jl j′l′

∫
fci j fdkl

ncindk
gσ̃ f ,rdudduc, (19)

where g is the colliding particles relative velocity, σ̃ f ,r = σ̃ f ,r(g) is the integral cross-section for the r-th process (i.e.
the differential cross-section integrated over velocities of particles after collisions9) and Na is the Avogadro number.

To simplify notation, we denote the different sets of types of slow processes as follows:

V = {VV ′, VT }, R = {2⇄ 2, 2⇄ 3}, VR = {VV ′, VT, 2⇄ 2, 2⇄ 3}. (20)

Then the relaxation terms Rvibr
c , Rreact

c can be expressed in terms of reaction rates:

Rreact
c = Na

∑
i

∑
γ∈R

Nγ∑
r=1

νr,ciξ̇γ,r, (21)

Rvibr
c = Na

∑
i

εc
i

∑
γ∈VR

Nγ∑
r=1

νr,ciξ̇γ,r = Na

∑
γ∈VR

Nγ∑
r=1

∆εc
i ξ̇γ,r, (22)

where ∆εc
i = ε

c
i′ − εc

i , and i′ denotes the vibrational level after the inelastic collision.

2. Zero-order approximation

In the zero-order approximation of the Chapman–Enskog method, the distribution function for a molecule with a har-
monic vibrational spectrum is a combination of Maxwell–Boltzmann distributions over velocity and rotational energy
and a non-equilibrium Boltzmann distribution over vibrational energy:

f (0)
ci j =

( mc

2πkT

)3/2 nc

Zint
c

sc
i j exp

(
−mcc2

c

2kT
−
εc

j

kT
−
εc

i

kT c
v

)
, (23)

Here, k is the Bolztmann constant, T c
v is the vibrational temperature of chemical species c and Zint

c is the internal
partition function, given by

Zint
c = Zrot

c Zvibr
c , Zrot

c =
∑

j

sc
j exp

(
−
εc

j

kT

)
, Zvibr

c =
∑

i

exp
(
−
εc

i

kT c
v

)
. (24)
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By substituting the zero-order distribution function into the integral reaction operators and applying microscopic
laws of energy conservation during collisions, it is possible to obtain that

Jr(0)
ci j = Γ

r
∑
l j′l′

∫
f (0)
ci j f (0)

dkl gσ̃ f ,rdud. (25)

In the case of VT–exchanges one should omit summation over l′ and in the case of dissociation reactions one should
omit summation over j′l′. Here

Γr = 1 − exp
( Ar

kT

)
, (26)

Ar are quantities introduced by analogy with affinities of chemical reactions.4 For the harmonic oscillator model, these
generalized affinities take on the following form:

AVV ′,r = ∆ε
c
i

(
1 − T

T c
v

)
+ ∆εd

k

(
1 − T

T d
v

)
, (27)

AVT,r = ∆ε
c
i

(
1 − T

Tv

)
, (28)

A2⇄2,r =
3
2

kT ln
mcmd

mc′md′
+ kT ln

Zint
c Zint

d

Zint
c′ Zint

d′
− kT ln

ncnd

nc′nd′
+ εc′ + εd′ − εc − εd+

+ εc′
0 + ε

d′
0 − εc

0 − εd
0 + ε

c
i

(
T
T c

v
− 1

)
+ εd

k

(
T
T d

v
− 1

)
− εc′

i′

(
T

T c′
v
− 1

)
− εd′

k′

(
T

T d′
v
− 1

)
, (29)

A2⇄3,r =
3
2

kT ln
mc

mc′,am f ′,a
− 3

2
ln(2πkT ) + 3kT ln h + kT ln Zint

c − kT ln
nc

nc′,an f ′,a
+

+ εc′,a + ε f ′,a − εc − εc
0 + ε

c
i

(
T
T c

v
− 1

)
, (30)

where indices c′, a and f ′, a denote the atomic products of the dissociation reaction and εc
0 =

1
2 hνc is the energy of the

lowest vibrational level.
The zero order reaction rates are linear functions of quantities Γr

ξ̇(0)
r = Γ

rk(0)
f ,r

L∏
c=1

Lc∏
i=1

(
nci

Na

)ν(r)
r,ci

(31)

and involve zero-order reaction rate coefficients k(0)
f ,r obtained by substituting the distribution function (23) into the

definition (19). Here Lc denotes the number of vibrational levels in chemical species c, ν(r)
r,ci is the reactant stoichiometric

coefficient.
The expression for the specific vibrational energy of chemical species c in the zero-order approximation is given

by

Evibr,c(T c
v ) =

1
ρc

∑
i

εc
i nci =

1
mcZvibr

c (T c
v )

∑
i

εc
i exp

(
−
εc

i

kT c
v

)
. (32)

Relaxation equations of specific vibrational energies (11) in the zero-order approximation reduce to

ρc
dEvibr,c

dt
= Rvibr

c − Evibr,cmcRreact
c , c = 1, . . . , Lm. (33)

In computational fluid dynamics, the rate of vibrational energy production due to VT transitions is commonly calculated
using the Landau–Teller expression:11

Rvibr,VT
c = ρc

Eeq
vibr,c(T ) − Evibr,c(T c

v )

τVT
c

, (34)

where Eeq
vibr,c (T ) is the equilibrium vibrational energy per unit of mass, τVT

c is the VT relaxation time for species c It has
been shown7 that an expression similar to (34) can be obtained from the strict definition of relaxation terms in the zero-
order approximation (21) under the following assumptions: (1) harmonic oscillator model; (2) weak deviation from
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equilibrium (T ≈ Tv); (3) constant specific heats; and (4) assumption of independence of VT relaxation time on the
chemical species of the collision partner. A more general expression for the rate of vibrational energy production due
to VT transitions was derived,7 which assumed only weak deviations from equilibrium and harmonicity of vibrational
spectra:

Rvibr,VT (0)
c =

T
T c

v

(
T − T c

v
)
ρccvibr,c

∑
d

nd

nτVT
cd

, (35)

where τVT
cd is the VT relaxation time τVT

cd for collisions between particles of species c and d. It was shown that under
conditions of strong non-equilibrium, formula (35) provides results which are in much better agreement with strict
kinetic-theory calculations than those given by the Landau–Teller expression.

3. First-order approximation

The first-order correction to the distribution function can be written as f (1)
ci j = f (0)

ci j ϕci j, where function ϕci j satisfies the
integral equation

−
∑

d

ncndIci jd(ϕ) = D f (0)
ci j − J sl(0)

ci j , (36)

Ici jd is the linearized integral operator of rapid processes,9 and the streaming operator D f (0)
ci j is given by the following

expression:

D f (0)
ci j = f (0)

ci j

d ln f (0)
ci j

dt
+ cc · ∇ f (0)

ci j −
dv
dt
∇cc ln f (0)

ci j −
(
∇cc ln f (0)

ci j

)
cc : ∇v

 . (37)

Calculating the streaming operator on the basis of the zero-order distribution function (23) and zero-order trans-
port equations, one can rewrite the first-order distribution function in terms of the gradients of macroscopic variables:

f (1)
ci j =

f (0)
ci j

n

(
−Aci j · ∇ ln T −

Lm∑
d=1

Ad(1)
ci j · ∇ ln T d

1 −
L∑

d=1

Dd
ci j · dd − Bci j : ∇v − Fci j∇ · v −

∑
γ∈VR

∑
r

Gγ,rci jΓ
γ,r

)
, (38)

where dc are diffusive driving forces:

dc = ∇
(nc

n

)
+

(
nc

n
− ρc

ρ

)
∇ ln p. (39)

Aci j, Ad(1)
ci j , Bci j, Dd

ci j, Fci j, Gγ,rci j , γ ∈ VR are unknown functions of the peculiar velocity and macroscopic variables,
which are defined as solutions of integral equations obtained by substituting representation (38) into (36) and equating
corresponding terms in the right- and left-hand sides of the resulting equation. For Gγ,r the terms appearing in the
right-hand side of the corresponding equations (36) are multipliers in front of the generalized thermodynamic forces
Γγ,r.

The integral equations defining Gγ,r take on the following form∑
d

ncnd

n2 Ici jd (Gγ,r) =
1
n

f (0)
ci jΦ

γ,r
ci j , r = 1, . . . ,Nγ, γ ∈ VR (40)

where Φγ,rci j is defined as follows:

Φ
γ,r
ci j = −Na

Hc j

cu

Lm∑
d=1

∑
k

kd

ρd

∂U
∂T d

v

(
∂Wd

∂T d
v

)−1

KVT
dk,r +

+ Na

[
εc

i

kT c
v

]′
1

T c
v

(
∂Wc

∂T c
v

)−1 ∑
k

kc

ρc
Kγck,r − J̃γ,rc, γ ∈ V (41)

Φ
γ,r
ci j = −Na

Hc j

cu

Lm∑
d=1

∑
k

kd −Wdmd

ρd

∂U
∂T d

v

(
∂Wd

∂T d
v

)−1

Kγdk,r−

− Na
Hc j

Φ0

L∑
d=1

∑
k

∂U
∂nd

Kγdk,r + Na

[
εc

i

kT c
v

]′
1

T c
v

(
∂Wc

∂T c
v

)−1 ∑
k

kc −Wcmc

ρc
Kγck,r +

Na

nc

∑
k

Kγck,r − J̃γ,rc, γ ∈ R. (42)
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The quantities cu, Kγci,r, Hc j are given by the expressions

cu =
∂U
∂T
, (43)

Kγci,r = νr,cik
(0)
f ,γ r

L∏
d=1

Ld∏
k=1

(
ndk

Na

)ν(r)
r,dk

, γ ∈ VR, (44)

Hc j =
1
T

−3
2
+

mcc2
c

2kT
+

[
εc

j

kT

]′ . (45)

Additional constraints for the functions Gγ,rci j follow from the normalization conditions imposed on the distribution
function: ∑

i j

∫
f (0)
ci j Gγ, rci j duc = 0, c = 1, ..., L, r = 1, ...,Nγ, γ ∈ VR, (46)

∑
ci j

∫
f (0)
ci j

(
mcc2

c

2
+ εc

i j

)
Gγ, rci j duc = 0, r = 1, ...,Nγ, γ ∈ VR. (47)

∑
i j

εc
i

∫
f (0)
ci j Gγ, rci j duc = 0, c = 1, ..., Lm, r = 1, ...,Nγ, γ ∈ VR. (48)

The first order corrections to the reaction rates can be written out as follows:7

ξ̇r,γ − ξ̇(0)
r,γ =

1
Na

[Gγ,r, F]∇ · v +∑
β,s

[
Gγ,r,Gβ,s

]
Γβ,s

 . (49)

It can be seen that in viscous flows, reaction rates are not independent quantities, and flow compressibility also influence
the rates of slow processes.

For numerical modeling, the functions Gγ,rci j are expanded in terms of Sonine polynomials S (q)
1/2 and Waldmann–

Trübenbacher polynomials P(p)
i j :

Gγ,rci j =
∑
qp

gc,qpS (q)
1/2

(
mcc2

c

2kT

)
P(p)

i j

(
εc

j

kT
+
εc

i

kT c
v

)
, γ ∈ VR. (50)

System of linear equations for determination of the expansion coefficients gγ,rc,qp are obtained by multiplying
equations (40) by

Qqp,γ,r
ci j = S (q)

1/2

(
mcc2

c

2kT

)
Pγ,r(p)

i j (51)

integrating over uc and summation over i, j. The systems have to be supplemented by conditions imposed on the
expansion coefficients which follow from the normalization conditions (46)–(48).

4. Results of numerical modeling

Numerical modeling of vibrational relaxation rates under various conditions was done for binary mixtures of nitrogen
and oxygen: N2, N and O2, O. In such mixtures, slow processes include VT transitions and dissociation-recombination
reactions. The cross-sections of these processes where assumed to be in the form

σsl,r = Psl,rσtot,el, (52)

where Psl,r is the probability of the slow process being considered and σtot,el is an elastic total cross-section. The
Variable Soft Sphere (VSS) model12, 13 was used to calculate all elastic cross-sections. Probabilities of VT transitions
where calculated using Forced Harmonic Oscillator (FHO) model,14 while the probability pc

diss,i of dissociation of a
molecule of species c with vibrational energy εc

i was calculated using the following formula:

pc
diss,i =

{
0, E < Dc,

1 − Dc
E , E ≥ Dc,

(53)

6
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where Dc is the dissociation energy of molecular species c and E = mcdg2/2 + εc
i , where mcd is the collision-reduced

mass and g is the magnitude of the relative velocity of the colliding particles.
In a binary mixture of the form A2, A, where A2 denotes the homonuclear molecular component and A — the

atomic component, expression (22) for the vibrational energy production rate can be reduced to

Rvibr
A2 = Na

NVT∑
r=1

∆εc
i ξ̇VT,r + Na

N2⇄3∑
r=1

∆εc
i ξ̇2⇄3,r = Rvibr,VT

A2 + Rvibr,2⇄3
A2 , (54)

where Rvibr,VT
A2

corresponds to the vibrational energy production rate due to VT transitions and Rvibr,2⇄3
A2 corresponds to

the vibrational energy production rate due to dissociation-recombination reactions.
It is of interest to study two different phenomena: firstly, the contribution of Rvibr,2⇄3

A2 to the vibrational energy
production rate in the zero- and first-order approximations, and secondly, the influence of cross-coupling between VT
transitions and dissociation-recombination reactions on the vibrational energy production rate due to VT transitions
Rvibr,VT

A2 , since it is usually modelled using the Landau–Teller formula which does not take these effects into account.
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Figure 1: Contribution of VT transitions to the vibrational energy productions terms for a N2, N flow with xN = nN/n =
0.5 and Tv = 2000K (a), Tv = 6000K (b)

Fig. 1 shows the contribution of VT transitions to the vibrational energy productions terms Rvibr,VT
N2 /Rvibr

N2 in
the zero- and first-order approximations. It can be seen that far from the point of vibrational equilibrium (T = Tv),
dissociation-recombination reactions have an insignificant influence on vibrational energy relaxation, while near the
point of vibrational equilibrium, dissociation due to thermo-chemical non-equilibrium is the primary contributor to the
vibrational energy production rate. The qualitative and quantitative behaviour of the relative contributions of different
processes remains virtually the same both for viscous and inviscid flows. Moreover, from Fig. 1 it can also be seen that
for the case of T < Tv, the contributions of dissociation and VT transitions to the vibrational energy production have
opposite effects.

Fig. 2 gives the ratio of relaxation terms Rvibr,VT
N2 due to VT transitions to the Landau–Teller vibrational energy

production term (34) for various models. It can be seen that the viscous contributions to vibrational relaxation rates
are significant at high temperatures under conditions of strong vibrational non-equilibrium, while the influence of
dissociation on rates of VT transitions via cross-coupling is significant only near vibrational equilibrium. It can also be
seen from Fig. 2 (b) that the influence of dissociation on VT transition rates near vibrational equilibrium is less than in
the case of Tv = 2000K, which is due to the point T = Tv = 6000 being closer to the temperature at which chemical
equilibrium occurs than the point T = Tv = 2000k.

In agreement with previous results,7 the original Landau–Teller model significantly underestimates vibrational
relaxation rates for the case of T > Tv and overestimates them for the case of T < Tv, while the modified Landau–
Teller formula (35) gives values of vibrational energy production rates more consistent with those obtained by strict
kinetic-theory calculations.
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Figure 2: Ratio of relaxation terms Rvibr,VT
N2 to the Landau–Teller vibrational energy production term for a N2, N flow

with xN = nN/n = 0.5 and Tv = 2000K (a), Tv = 6000K (b)
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Figure 4: Ratio of relaxation terms Rvibr,VT
O2 to the Landau–Teller vibrational energy production term for a O2, O flow

with xO = nO/n = 0.5 and Tv = 2000K (a), Tv = 6000K (b)

For oxygen, the situation is slighly different, which can be attributed to a lower dissociation energy, and therefore,
larger dissociation cross-sections. This leads to a significant influence of dissociation at high temperatures on the
first-order corrections to relaxation rates, as shown on Fig. 4. Overall, for oxygen, the influence of dissociation-
recombination reactions on vibrational energy production terms is significantly larger than for nitrogen, especially at
high flow temperatures.

5. Conclusion

Vibrational relaxation rates in multi-temperature flows are studied in the inviscid and viscous approximations Chapman–
Enskog method. For molecules with harmonic vibrational spectra, a simplified method for calculating first-order cor-
rections to reaction rates is presented, along with a modification of the widely-used Landau–Teller formula.

Vibrational energy production rates are calculated for binary flows of nitrogen and oxygen (N2, N and O2, O)
using various models; the influence of dissociation-recombination reactions on vibrational relaxation rates in viscous
flows is assessed. It is shown that both for nitrogen and oxygen, first-order corrections are significant at high tempera-
tures and conditions of strong vibrational non-equilibrium; in nitrogen flows, dissociation plays a noticeable role only
near vibrational equilibrium. For oxygen, due to the lower dissociation energy of O2 molecules, the effect of dissocia-
tion on vibrational energy production is more significant, especially at high temperatures. The modified Landau–Teller
expression provides significantly better agreement with results obtained using rigorous kinetic-theory methods than the
original Landau–Teller formula.
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