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Abstract 
The pressure driven rarefied gas flow of polyatomic gases through short tubes in a wide range of the 
Knudsen number is numerically investigated. The downstream over the upstream pressure ratio is 
taken very close to zero. Such flows are characterized by low Reynolds numbers and high viscous 
losses and therefore short circular micro-tubes may be used instead of typical micro-nozzles. The main 
computed quantities include the flow rate, the discharge coefficient, the thrust and the impulse factor 
which are provided in terms of the gas rarefaction and the tube dimensionless length. Based on the 
above a parametric study on the propulsion characteristics of micro-tubes is provided. Furthermore, a 
comparison between corresponding polyatomic and monatomic results is performed and the effect of 
the internal degrees of freedom on the results is investigated.    

1. Introduction 

In several practical applications including micro propulsion nozzles in high altitude the flow may be in the whole 
range of the Knudsen number and modelling must be based on deterministic techniques solving the Boltzmann 
equation or alternatively on the stochastic DSMC method. Micro-nozzles are often used as low-thrust propulsion 
systems in order to produce accurate orbital maneuvers in micro-satellites. Therefore, a systematic study of the gas 
flow in such devices is needed in order to determine the optimal geometry and design.  It is well known that, at low 
Reynolds numbers, the viscous losses in micronozzles become large enough making the concept of a nozzle 
expansion useless and micronozzles can be replaced by short circular tubes. Rarefied monatomic gas flows through 
capillaries due to pressure gradients have been extensively studied in the past [1, 2, 3]. The corresponding work in 
polyatomic gases is commonly handled based on the DSMC method, while similar simulations based on kinetic 
modelling are limited.  
In the present work the rarefied gas flow of polyatomic gases through short circular tubes due to pressure gradients is 
modelled via the polyatomic Holway model of the Boltzmann equation [4]. This model holds the entropy inequality 
and ensures good agreement with experimental data concerning heat transfer [5, 6] and steady condensation [7] 
configurations. The purpose of the present work is to numerically investigate polyatomic gas expansion into very low 
pressures in a wide range of the Knudsen number and to compute the deduced flow rate, discharge coefficient, thrust 
the impulse factor in terms of flow and geometric parameters as well as to examine the effect of the internal degrees 
of freedom by comparison with corresponding monatomic flows.  

2. Flow configuration and basic parameters  

Consider two large reservoirs A  and B  which are connected by a tube of radius R  and finite length L . The 
polyatomic gas in the containers far from the tube is in equilibrium at pressures AP  and BP , with / 0.01B AP P  . The 

walls and the gas in the container areas far from the tube are maintained at the same temperature 0T . The 

computational domain consists of the two large computational areas, which correspond to the upstream and 
downstream reservoir including an intermediate area which contains the tube. The flow configuration and the 
computational domain are shown in Fig. 1. The reference quantities are R , 0T  and AP , while the most probable 

speed, defined as 0 02 Bk T m   with m  and Bk  denoting the molecular mass and the Boltzmann constant 

respectively, is taken as the reference velocity. The flow is characterized by the ratio /L R  and the rarefaction 
parameter defined as 
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where 0  is the reference viscosity at temperature 0T . It is noted that the rarefaction parameter is proportional to the 

inverse Knudsen number, with the limiting values at 0 0   and 0   corresponding to the free molecular and 

hydrodynamic limits respectively. 
 

 

Figure 1: Flow configuration and computational domain. 

 
In the temperature range where the effects of vibrational degrees of freedom can be neglected, the problem may be 
modelled by the Boltzmann equation for a gas of rigid rotators. The investigation is based on the description of the 

state of a polyatomic gas using the distribution function  ˆ ˆ ˆˆ, , ,f r z eξ , which is a function of the spatial coordinates r̂  

and ẑ , the molecular velocity ξ  and the rotational motion energy ê .  Then, the macroscopic quantities of practical 
interest are obtained by the moments of the distribution function. Furthermore, it is convenient to introduce the 
dimensionless independent variables ˆz z R , ˆr Rr  and 0c   as well as the dimensionless macroscopic 

quantities 
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where N  is the number density, P  is the pressure, û  is the velocity vector and T  is the total (thermodynamic) 
temperature. The subscripts tr and rot denote the translational and rotational parts, while the parameter j   is the 

number of rotational degrees of freedom ( 0j   refers to monoatomic molecules, 2j   to diatomic and linear 

polyatomic molecules and 3j    to nonlinear polyatomic molecules). The dimensionless flow rate, thrust, impulse 

factor and discharge coefficient, which are overall quantities of practical interest, are defined respectively as: 
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Here, Μ , t̂F  and ŜPI  are the dimensional mass flow rate, thrust and impulse factor respectively,  9.81rg   m/s2 is 

the gravity accelaration and (5 ) (3 )j j     is the ratio of the specific heats of the gas. The subscript ex denotes 

the values at the exit of the tube ( /z L R ). Also, the local Mach number is given by  
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where 0s Bc k T m  is the speed of sound and 2 2
r zu u u   is the magnitude of u . 

3. Kinetic modelling  

The effort of numerically solving the Boltzmann equation is significantly reduced by substituting its collision term 
with reliable kinetic models. The well-known model introduced by Holway [4] is implemented. The H-theorem can 
be proved in a straightforward manner for this model following the arguments leading to analogous proof of the 

BGK model. It is obvious that the dependency of the distribution function f̂  on the energy ê  of the rotational 

motion significantly increases the computational effort. However, for the specific problem under consideration the 
computational effort is reduced by eliminating, based on a projection procedure, the ê  component of energy by 
introducing the following reduced distributions [8]: 
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Then, for the present flow problem the Holway model may be written in dimensionless form as: 
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Here, the hard-sphere intermolecular potential has been applied. The parameter 10 1Z    indicates the rotational 
collisions as a fraction of the total number of collisions. It is noted, that as the parameter  Z   the first equation 
in (9) reduces to the kinetic BGK-model for a monatomic gas [9]. The dimensionless macroscopic quantities are 
expressed in terms of the functions g  and h  as: 
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Next, to close the problem the formulation of the boundary conditions is provided. Puerely diffuse boundary 
reflections are considered at the walls and symmetry is imposed on ˆ 0r  . For the open boundaries, a Maxwellian 



Christos Tantos, Dimitris Valougeorgis 
     

 4 

distribution is supposed based on the local values of the pressure and temperature assuming zero bulk velocity. Based 
on the above the boundary conditions in dimensionless form can be written as: 
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The superscripts (+) denote the outgoing distribution from a surface. The parameter wn  is calculated by the no 

penetration condition at the walls. The set of integro-differential Eqs. (9) with the boundary conditions (11-13) are 
solved numerically discretizing in the physical space by the control volume approach and in the molecular velocity 
space by the discrete velocity method. The macroscopic quantities are computed by Gauss-Legendre quadrature in 
the velocity magnitudes and trapezoidal rule in the polar angles. The implemented algorithm has been extensively 
applied in previous works to solve with considerable success heat transfer configurations [10] and non-linear flows 
through short tube due to pressure and temperature gradients [11]. The iteration process is terminated when when the 
convergence criteria 
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with t  denoting the iteration index and K  the number of nodes in the physical space, is fulfilled, while the 
termination parameter is set to 910  . 

4. Results and Discussion   

Calculations have been carried out in the range of the rarefaction parameter 0  from 0 to 10, i.e. in the free 

molecular and transition regimes and for 1L R   and 5. It is noted that typically the parameter Z  varies from 1 to 5 

and the choice of 3Z   for the problem under question is reasonable. The presented results have been obtained for 
purely diffuse boundary conditions and the HS model with the upstream and downstream domains being 15 15  unit 
lengths. Tabulated results are presented for the dimensionless flow rate, thrust, impulse factor and discharge 
coefficient as well as plotted results for the distribution of various macroscopic quantities. 
In Table 1 the dimensionless flow rate W  for 0,2,3j   ( 0j   refers to monatomic gases) is given. Clearly, the 

effect of the internal degrees of freedom on the gas flow rate is very small for all values of the rarefaction parameter 
and for both 1L R   and 5 . It is noted however that for 0 1   and 10, W  is decreased as j  is increased. Also, W
is increased as the length of the channel is decreased and the rarefaction parameter is increased. More specifically, 

the flow rate for 0 0.1,1      increases very slowly and then more rapidly for 0 1,10     . Additional simulations 

have been performed with 6Z   for 0 1   and 1L R   and 5 showing very small effect on the flow rates. 

 
Table 1: Dimensionless flow rate W  in terms of the rarefaction parameter and tube length to radius ratio. 

 0δ  

0 0.1 1 10 

= 1L R   = 5L R  = 1L R  = 5L R  = 1L R  = 5L R  = 1L R   = 5L R  

= 0j  0.6658 0.3071 0.6781 0.3099 0.7612 0.3344 1.070 0.5487 

= 2j  0.6658 0.3071 0.6779 0.3099 0.7598 0.3341 1.053 0.5435 

= 3j  0.6658 0.3071 0.6779 0.3099 0.7594 0.3341 1.049 0.5421 
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In Table 2 the variation of the dimensionless thrust tF  in terms of the rarefaction parameter 0  and the ratio L R  is 

presented. The thrust is increased as the rarefaction parameter 0  is increased and the ratio L R  is decreased. It is 

clear that the propulsion efficient is increased as the tube length is decreased. Similarly to the flow rates, the 
rotational degrees of freedom and the parameter Z  have a small effect on the values of tF . It is seen however, that 

as j  is increased tF  is slightly increased. 

In Table 3 the impulse factor spI
 
is shown. As the flow becomes more rarefied, spI

 
is decreased. The increment of 

the rotational degrees of freedom leads to an increment of the impulse factor. This is well expected since the impulse 
factor is defined as the ration of the thrust over the flow rate with the former one increasing and the latter one 
decreasing as j  is increased. 

In Table 4 the discharge coefficient dC  is presented. The discharge coefficient dC  decreases by increasing the tube 

ratio L R , while for fixed L R , dC  is increased as 0  is increased. In addition, as the rotational degrees of 

freedom are increased from zero to two and then to three, the coefficient dC  is increased. This is due to the fact that 

the ratio of the specific heats of the gas is decreased as j  is increased, taking also into account that the flow rates of 

the two types of gases are about the same. Overall it may be concluded that the propulsion characteristics of 
polyatomic gas expansion through micro-tubes are slightly improved compared with the corresponding ones in the 
case of monatomic gases. 
 

Table 2: Dimensionless thrust tF  in terms of the rarefaction parameter and tube length to radius ratio. 

 0δ  

0 0.1 1 10 

= 1L R   = 5L R  = 1L R  = 5L R  = 1L R  = 5L R  = 1L R   = 5L R  

= 0j  0.4500 0.2079 0.4591 0.2103 0.5215 0.2293 0.7623 0.3867 

= 2j  0.4834 0.2232 0.4925 0.2255 0.5546 0.2442 0.7859 0.4027 

= 3j  0.4918 0.2270 0.5009 0.2293 0.5629 0.2480 0.7922 0.4069 

 
Table 3: Dimensionless impulse factor spI  in terms of the rarefaction parameter and tube length to radius ratio. 

 0δ  

0 0.1 1 10 

= 1L R   = 5L R  = 1L R  = 5L R  = 1L R  = 5L R  = 1L R   = 5L R  

= 0j  0.6759 0.6769 0.6771 0.6786 0.6852 0.6856 0.7124 0.7048 

= 2j  0.7260 0.7267 0.7265 0.7275 0.7299 0.7310 0.7463 0.7410 

= 3j  0.7386 0.7391 0.7388 0.7398 0.7413 0.7422 0.7552 0.7506 

 
Table 4: Discharge coefficient dC  in terms of the rarefaction parameter and tube length to radius ratio. 

 0δ  

0 0.1 1 10 

= 1L R   = 5L R  = 1L R  = 5L R  = 1L R  = 5L R  = 1L R   = 5L R  

= 0j  0.3658 0.1687 0.3725 0.1703 0.4182 0.1837 0.5879 0.3014 

= 2j  0.3879 0.1789 0.3950 0.1806 0.4427 0.1947 0.6136 0.3167 

= 3j  0.3945 0.1819 0.4017 0.1836 0.4500 0.1980 0.6213 0.3212 
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In Figure 2 the distributions of the Mach number along the symmetry axis 0r   for 1L R   and 5 at 0 10δ   are 

shown. The Mach number far upstream is almost zero and is increased in the region just before the tube, while after 
the tube it is rapidly decreased. It is seen that as the number of the internal degrees of freedom is increased the Mach 
number is increased due to the decrease of the ratio of the specific heat while the magnitude of the velocity vector in 
the two types of gas is almost the same.  

 

    Figure 2: Distributions of the Mach number for / = 1L R  (left) and / = 5L R  (right) with 0 = 10δ  along the 

symmetry axis. 

 

In Figure 3 the distributions of the dimensionless axial velocity, pressure, and temperature along the symmetry axis 
0r   for 0 = 0.1δ and 10 with 1L R  are shown. In Figure 4 the corresponding results for 5L R  are presented. 

Starting with the pressure variation, it is seen that far upstream is equal to one, then it is rapidly decreased through 
the tube and finally after the tube it gradually approaches the far downstream conditions. As expected the axial 
velocity has the same behavior with the Mach number. The maximum value of the velocity is increased as 0δ  is 

increased. The axial velocity and the pressure profiles in polyatomic gases ( 2j  ,3) are quantitatively very close to 

the corresponding profiles for monatomic gases. The temperature equals unity in most of the domain, while inside 
the tube is decreased. The minimum value of the temperature distribution is decreased as the rarefaction of the gas is 
decreased and the ratio L R is increased. In the case of polyatomic gases the translational tr  and total tot  
temperatures have the same qualitative behavior with the temperature of the monatomic gas. The rotational 
temperature rot  is maintained almost constant in the whole domain for small 0δ , but as the rarefaction level of the 

gas is decreased it is also decreased in the same way as the translational and total temperatures. 
Distributions of the dimensionless axial velocity and temperatures in the radial direction at the middle ( 2z L R ) of 

the tube are shown in Figure 5 for 0 = 1δ  and 0 = 10δ  with 1L R  . As expected, the velocities have a parabolic 

type shape with minimum and maximum values at the wall and at the center of the tube, respectively. The velocity 
profiles of diatomic gases ( 2j  ) are almost identical with the corresponding monatomic profiles. The 

corresponding temperature profiles are also shown. In all cases a temperature drop across the tube (radial direction) 
is observed. For 0 = 1δ , the translational temperature of a diatomic gas is close to the corresponding temperature of a 

monatomic gas, while the rotational temperature is kept almost constant. For 0 = 10δ , the translational temperature 

of a diatomic gas is higher than the temperature of a monatomic gas, while the rotational temperature is not constant 
anymore and it is reduced moving from the wall towards the center of the tube. 
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Figure 3: Dimensionless distributions of axial velocity (up), pressure (middle) and temperatures (down) for 0 = 0.1δ  

(left) and 0 = 10δ  (right) with / = 1L R  along the symmetry axis. 
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Figure 4: Dimensionless distributions of axial velocity (up), pressure (middle) and temperatures (down) for 0 = 0.1δ   

(left) and 0 = 10δ  (right) with / = 5L R  along the symmetry axis. 
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Figure 5: Distributions of axial velocity (left) and temperatures (right) for 0 = 1δ  (up) and 0 = 10δ  (down) with

/ = 1L R  at  2z L R . 

5. Conclusion 

The characteristic parameters of short tubes operating as propulsion systems in the case of polyatomic gases have 
been computed implementing kinetic modeling. Solving the Holway kinetic model subject to diffuse boundary 
conditions the flow rate, the thrust, the impulse factor and the discharge coefficient as well as the distributions of the 
macroscopic quantities with practical interest have been obtained. It is found that the effect of the rotational degrees 
of freedom on the macroscopic quantities is small except in the case of temperature distributions. It may be 
concluded that the overall propulsion efficiency in the case of polyatomic gases compared to the one in monatomic 
gases is slightly improved. In addition it has been demonstrated that polyatomic kinetic modeling may be applied as 
an alternative approach to DSMC. The implemented parametric study may be useful in optimizing the design and 
manufacturing of micro-nozzles applied in micro-propulsion systems under rarefied conditions. 
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