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Abstract

The study was undertaken as part of a larger effort to establish a common CFD code for simulation
of internal and external flows, and involves some basic validation studies. The governing equations
are solved with finite volume code on unstructured meshes. The computational procedure involves
reconstruction of the solution in each control volume and extrapolation of the unknowns to find
the flow variables on the faces of control volume, solution of Riemann problem for each face of the
control volume, and evolution of the time step. The non-linear CFD solver works in an explicit
time-marching fashion, based on a three-step Runge-Kutta stepping procedure. Convergence to
a steady state is accelerated by the use of geometric technique, and by the application of Jacobi
preconditioning for high speed flows, with a separate low Mach number preconditioning method
for use with low speed flows. CFD code is implemented on GPUs. Speed-up of solution on GPUs
with respect to solution on CPU is compared with the use of different meshes and different methods
of distribution of input data into blocks. The results obtained provide promising perspective for
designing a GPU-based software framework for applications in CFD.

1. Introduction

Fluid flow and heat transfer occur in nature and engineering. There are numerous naturally occurring
phenomena as well as technical and technological applications in which fluid flows and heat transfer play an
important role.

The methods of computational fluid dynamics (CFD) are extensively applied in design and optimization
of industrial devices to get more insight into 3D unsteady flows through fluid or gas passages. Accurate
prediction of compressible flows still remains a challenging task despite a lot of work in this area. The quality
of CFD calculations of the flows strongly depends on the proper prediction of flow physics (shock waves,
rarefaction waves, recirculation regions). Investigations of heat transfer, skin friction, secondary flows, flow
separation and re-attachment effects demand reliable numerical methods, accurate programming and robust
working practices.

The stagnation in the clock-speed of central processing units (CPU) has led to significant interest in
parallel architectures that offer increasing computational power by using many separate processing units.
Modern graphics hardware contains such an architecture in the form of the graphics processing units (GPU).
GPU platforms including GPU clusters make it possible to achieve speedups of an order of magnitude over
a standard CPU in many CFD applications and are growing in popularity [1].

Speed and accuracy are key factors in the evaluation of CFD solver performance. In CFD applications,
the increasing demands for accuracy and simulation capabilities produce an exponential growth of the required
computational resources. High performance computing (HPC) resources are widely used in engineering
applications.
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The use of GPUs is a cost effective way of improving the performance in CFD applications [2]. Taking
advantage of any multi-core architecture requires programs to be written for parallel execution. For CFD, this
has traditionally meant splitting the flow domain into several parts (domain decomposition) that are solved
independently on each processor node in a cluster, with the flow properties at boundaries being communicated
between the nodes after each time step (processor balancing). This is also the process adopted for GPUs, but
the GPU introduces several additional constraints that make the stream programming paradigm particularly
useful [3].

Although GPU has attractive characteristics for massively parallel computations, it has not been imple-
mented in CFD for a long time due to the complex programming techniques. Developers must have special
knowledge about computer graphics which is unfamiliar for general CFD researchers. Thanks to the CUDA
(Compute Unified Device Architecture) library provided by NVIDIA, researchers are free from the restric-
tions of computer hardware knowledge and need to concentrate on CFD algorithms and CUDA programming
language.

Depending on the complexity of the CFD problem to represent and solve, structured or unstructured
meshes are used. Computational algorithms are more efficiently implemented on structured meshes, and data
structures to handle the mesh are easy to implement [4,5]. However, structured meshes present poor accuracy
if the problem to be solved has complex internal or external boundaries. On the other hand, unstructured
meshes present more flexibility and higher accuracy to represent problems that have complex geometries
and boundaries [6]. However, the data structures to handle it are not easy to implement, and also explicit
neighboring information should be stored.

Much of the efforts in running CFD codes on GPUs has been directed toward the case of CFD solvers
based on structured and block-structured meshes [3,7-12]. These solvers are easily to implement on GPUs
due to their regular memory access pattern. There are various examples of implementation of CFD solvers
on structured meshes for simulation of flows of viscous incompressible fluid [13-15].

Unstructured mesh based analysis methods on HPC systems with shared memory and distributed
memory have been largely studied. However, shared and distributed memory systems are fundamentally
different from GPUs. A GPU is a SIMT (Single Instruction Multiple Thread) engine, whereas shared and
distributed memory systems are MPMD (Multiple Program Multiple Data) engines. The common aspect of
these parallel engines is that in both of them the mesh application is limited by memory latency. Achieving
good performance for unstructured mesh based CEFD solvers on GPUs is more difficult due to their data
dependent and irregular memory access patterns [16-18].

The most of the work done so far has either been for relatively small codes written from scratch or
for a small portion of a large existing code. However, GPU support is available in mathematical packages
(MATLAB) and commercial CFD solvers (ANSYS CFX, ANSYS Fluent).

Multigrid and preconditioning techniques are widely used to increase performance of the CFD code. A
key issue is effective implementation of these techniques on unstructured meshes.

The present work is undertaken as a part of a larger effort to establish a common CFD code for
simulation of flows in aerospace and mechanical applications, and involves some basic validation studies. Up
to now, a few researches on fully 3D compressible Navier—Stokes GPU solver for engineering applications
have been reported. The motivation of this paper is to assess the in-house compressible CFD code, and
to demonstrate successful design of a highly parallel computation system based on GPUs and validate the
speedup factor compared with CPU. The code is programmed following the standard of CUDA C language.
Single precision arithmetic is kept through the entire residual computations with the help of latest GPU
hardware and careful design of CFD code. The results obtained are generally in reasonable agreement with
the available experimental and computational data reported in literature. The parallelization methods are
studied and speedup factor by GPU cards is measured.

2. Governing equations
In Cartesian coordinates (z,y, z), an unsteady 3D flow is described by the following equation written in
conservative form

0Q n OF, N OF,  OF;
ot or dy 0z

= 0. (1)
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The pressure is calculated as
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The vector of conservative variables, (), and the flux vectors, Fy, F}, and F., have the following form
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The components of viscous stress tensor and components of heat flux vector are found from the relations
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Here, ¢ is the time, p is the density, v;, vy, and v, are the velocity components in the coordinate directions
x, Yy, and z, p is the pressure, e is the total energy per unit mass, 7' is the temperature, and ~ is is the ratio
of specific heat capacities.

The governing equations written in the form (1) are suitable for both laminar and turbulent flows. In
simulation of turbulent flows, the effective viscosity, p., is calculated as a sum of molecular viscosity, u, and
eddy viscosity, u¢, and the effective thermal conductivity, Ae, is expressed in terms of viscosity and Prandtl
number. They are expressed as

g
He = [+ e, >\e_cp<Pr+Prtt>v

where ¢, is the specific heat capacity at constant pressure. Molecular and turbulent Prandtl numbers are
Pr = 0.72 and Pr; = 0.9 for air. The Sutherland’s law is used to obtain molecular viscosity as a function of
temperature

"o (T)3/2T*+so
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where /1, = 1.68 x 1075 kg/(m s), T = 273 K and Sy = 110.5 K for air.
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3. Numerical method

The non-linear CFD solver works in an explicit time-marching fashion, based on a Runge-Kutta stepping
procedure. The flux vector is split into the inviscid and viscous components. The governing equations are
solved with upwind finite difference scheme for inviscid fluxes, and central difference scheme of the second
order for viscous fluxes. The unstructured CFD code developed uses an edge-based data structure to give the
flexibility to run on meshes composed of a variety of cell types [19]. The fluxes through the surface of a cell
are calculated on the basis of flow variables at nodes at either end of an edge, and an area associated with
that edge (edge weight). The edge weights are pre-computed and take into account geometry of the cell.
In conservative variables, the equation describing an unsteady viscous compressible gas flow is written
as
oQ
TE4v-[F@+c@vQ) =0, 2)
where @ is the vector of conservative variables, F'(Q) is the vector of inviscid fluxes, and G(QU, VQ) is the
vector of viscous fluxes.
Integrating equation (2) over the control volume V with boundary 0V, whose orientation is specified
by the outer unit normal n, and applying the Gauss—Ostrogradsky theorem, gives

0
a/QdQ+/F(Q).ndSJr/G(c,g,vcg).mzszo. (3)
v ov v
The governing equation (3) solved by the CFD code is of the form
dq
% 4

where () is the flow variables vector averaged over the control volume. The flow residual is

where L(Q) denotes all the spatial differencing terms, and S(Q) denotes terms from boundary conditions and
possible source terms.
Equation (4) is written in the form

aQr
dt

+L(Q7) =0, ()

where L(QT) is the differential operator. The subscript ¢ refers to the control volume, and the superscript n
refers to the time layer.
The three-step Runge—Kutta method is used for discretization of the equation (5) in time
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3 1
QY = Q" + 7 [0 + ar@M)];
: 1 2
QY =30 + S [0 + &L @)

Here, QY = Q(") and QE3) _ Q£n+1).

1
The inviscid flux is found from the relation

F(Qr,Qr) = %[F(QL) + F(Qr) — Al (Qr — QL)]

where the subscripts L and R refer to cells on the left and on the right edges of the control volume. The
matrix A is presented in the form A = RAL, where A is the diagonal matrix composed from the Jacobian
eigenvalues, and R and L are the matrices composed from its right and left eigenvectors, respectively.
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The time step is found from the estimation of the inviscid and viscous fluxes

L1 1 B
At;  CFL "™\ A Az f°

where CFL is the Courant-Friedrichs-Lewy number, and 3 ~ 0.5. The time step At} is calculated on the
basis of the spectral radius of the Jacobian of the discrete inviscid operator, and the time step At? is found
on the basis of the quasi-linear form of viscous fluxes written in primitive variables and the spectral radius
of the Jacobian of the discrete viscous operator.

Convergence to a steady state is accelerated by the use of multigrid techniques [20], and by the applica-
tion of block-Jacobi preconditioning for high-speed flows, with a separate low-Mach number preconditioning
method for use with low-speed flows [21,22]. The sequence of meshes is created using an edge-collapsing
algorithm.

The computational procedure is implemented as a computer code in C/C++ programming language.
Parallelization of the computational procedure is performed by a message passing interface (MPI). CUDA
technology is used to implement GPU version of the code.

4. Preconditioning

Numerical methods for compressible gas equations that perform well at moderately subsonic and supersonic
flow velocities become low effective or unsuitable as applied to flows at low Mach numbers (M < 0.2),
which is manifested by slower convergence of time marching to a steady state and by the loss of accuracy
of the resulting steady state solutions. The slower convergence of time marching is explained by the fact
that the stiffness of the compressible Euler and Navier—Stokes equations increases as M — 0 (this feature is
exhibited at the differential level). The stiflness is characterized by the ratio of the maximum to minimum
eigenvalues of the Jacobian (the ratio of the maximum to minimum propagation velocities of perturbations).
The integration time step is determined by the velocity of the fastest wave (acoustic waves, A = |u+c|), while
the time required for reaching a steady state depends on the velocity of the slowest wave (convective waves,
A = |u]). In viscous problems and turbulent flow computations on stretched meshes in boundary layers, the
time step is restricted by the acoustic solution modes and by the mesh size in the normal direction to the
wall.

Preconditioning makes it possible to eliminate the stiffness of the original system and to accelerate
the convergence of time marching to a steady state. Additionally, subsonic flows can be computed more
accurately by applying a modified discretization of convective fluxes in the preconditioned equations. In the
general case, preconditioning changes the form of the underlying equations and the properties of difference
schemes because it introduces artificial viscosity.

A preconditioning method is developed. It makes it possible to construct a universal numerical proce-
dure for computing inviscid and viscous compressible flows in a wide range of Mach numbers (from essentially
subsonic to transonic and supersonic flow velocities). The preconditioning matrix is constructed by applying
the approach proposed in [23]. This approach relies on physical variables (one of which is temperature). Its
features include a specific form of writing fluxes, the computation of a dissipative term in the course of finding
the fluxes through control volume faces, and a specific representation of matrices in the diagonalization of
the inviscid flux Jacobian of the preconditioned system.

5. Multigrid method

The multigrid method is not a fixed technique but rather a stencil and a build-up construction whose imple-
mentation efficiency depends on the adaptation of its components to the problem in question.

The multigrid cycle consists of the following steps: pre-smoothing, residual calculation at the current
mesh level, restriction and correction of the residual on the coarse mesh, prolongation and interpolation
of the error to a fine mesh, correction of the fine mesh solution using the correction interpolated from
the coarse mesh (coarse mesh correction), and post-smoothing for the suppression of the high-frequency
error components appearing after the interpolation to the fine mesh. The computations terminate when a
prescribed accuracy is achieved.
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The smoothing method (smoother) damps the high-frequency error modes and appears the element of
the multigrid method that is most dependent on the type of the problem. The role of the smoother is not
so much to reduce the total error but rather to smooth it (suppress the high frequencies) so that the error
admits a good approximation on the coarse mesh. Standard smoothers are linear iterative methods (Jacobi,
Gauss—Seidel, and incomplete factorization methods).

The quality of the multigrid method is determined by the chosen sequence of meshes and interpolation
operator. Quality criteria include the convergence factor, which shows how fast the method converges (how
many iteration steps are required to achieve the prescribed level of the residual) and the complexity of the
restriction and prolongation operators, which determines the number of operations and the amount of storage
required for each iteration step.

The implementation of the multigrid approach is illustrated in the Figure 1 (V-cycle). The iterations
begin with the mesh of the highest resolution (level 1). The number of mesh levels is nlevel. The arrows
indicate the transmission of data from one mesh level to another. The horizontal arrows show that the
computations (smoothing) occurs at a single mesh level. The CFL number is estimated by executing nstart
iteration steps (one iteration step is used by default). The parameter npre specifies the number of iterations
used for pre-smoothing at each mesh level (in the transition from a fine to a coarse mesh). The parameter
npost defines the number of iterations used for postsmoothing (in the transition from a coarse to a fine mesh).
The parameter ncrs specifies the number of iterations executed on the coarsest mesh.
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Figure 1: Implementation of the multigrid method (V-cycle)

A multigrid method is proposed for solving the Euler and Navier—Stokes equations on an unstructured
mesh. The multigrid technique producing a sequence of meshes via collapsing faces is implemented using
a structure associated with mesh faces (edge weights). The discretization of the equations on a sequence
of nested meshes is easy to implement, since the finite volume method developed has no constrains on the
number of cells, their faces, or and the cell shape (for hybrid meshes, the cell shape in the original mesh
changes in the transition to the next mesh level).

6. Parallel implementation

The performance of critical portion of the CFD solver consists of a loop which repeatedly computes the time
derivatives of the conserved variables. The conserved variables are then updated using an explicit Runge-
Kutta time-stepping procedure. The most expensive computation consists of accumulating flux contributions
across each face when computing the time derivatives. Therefore, the performance of the CUDA kernel which
implements this computation is crucial in determining whether or not high performance is achieved.

The finite volume mesh is generated from input data with the appropriate setting of initial and bound-
ary conditions. The computation steps required by the problem considered are classified into two groups,
computations associated to faces and edges, and computations associated to volumes. The numerical scheme
exhibits a high degree of data parallelism because the computation at each edge/volume is independent with
respect to the computation performed at the rest of edges/volumes. Moreover, the explicit scheme presents
a high arithmetic intensity and the computation exhibits a high degree of locality.
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The implementation is split between CPU and GPU. Pre- and post-processing steps are done on the
CPU, leaving only the computation itself to be performed on the GPU. For example, the CPU constructs
the mesh and evaluates the face areas, face normals and cell volumes. The initialization of the flowfield is
also done on the CPU. Each time step of the computation then involves a series of kernels on the GPU which
evaluate the cell face fluxes, sum the fluxes into the cell, calculate the change in properties at each node,
smooth the variables and apply boundary conditions. Each kernel operates on all the nodes (no distinction
is made between boundary nodes and interior nodes). This causes difficulties if an efficient code is to be
obtained. For example, the change in a flow property at a node is formed by averaging the flux sums of
the adjacent cells (for mesh with quadrangle cells, four cells surround an interior node, but only two at a
boundary node). This problem is overcome using dependent texturing. The indices of the cells required to
update a node are pre-computed on the CPU and loaded into GPU texture memory. For a given node, the
kernel obtains the indices required and then looks up the relevant flux sums which are stored in a separate
GPU texture. This avoids branching within the kernel.

The implementation of the finite volume method using a global memory and register file is illustrated in
the Figure 2. Each time layer calculations are performed in two stages. Two kernels are used for the parallel
implementation of the finite volume method on GPU, one of which calculates the flow through the faces of
control volumes (stage 1), and the other one provides flow variable calculations on the next time layer (stage
2). On the first stage, flow variables in the centers of control volumes are stored in global memory (array
Q). One thread is used to calculate the fluxes through the faces of control volume. Each thread uses the
flow variables vector in adjacent control volumes, ¢ and 7 + 1. Fluxes through cell faces are stored in array
F. On the second stage, a set of threads corresponding to the same number of control volumes is launched
to calculate the flow variables vector on a new time level. The fluxes through the faces i — 1/2 and i + 1/2
are used, and the solution is computed in the control volume i. The solution is then stored in the array Q.
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Figure 2: Flux calculation (a) and calculation of flow variables vector on a
new time layer (b)

The most costly stage in the algorithm is edge-based calculations involving two calculations for each
face communicating two cells. This contribution is computed independently for each face and is added to
the partial sums associated to each cell. For each control volume, the local time step is computed. The
computation for each volume does not depend on the computation for the rest of volumes and therefore this
stage is performed in parallel. The minimum of all the local time steps previously obtained for each volume
is computed. The (n+ 1)-th state of each control volume is approximated from the n-th state using the data
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computed in the previous phases. This stage is also completed in parallel.

7. Test cases

A series of model simulations in a wide range of Mach numbers are used to analyze the convergence rate
and accuracy of steady state solutions of the original and preconditioned gas dynamics equations. These
equations are integrated until a steady state solution is reached.

7.1 Flow through a channel with a bump

The flow through a plane channel with a bump is considered. The length to height ratio in the channel is
L/H = 4, and the maximum height of the bump (which is a circular arc) is 0.1H (the maximum bump is
10% of the channel width). The computations are performed on a mesh of 120 x 20 cells (Figure 3) with 60
nodes placed on the bump surface.

%

i

B - Feen

Figure 3: Computational mesh

Flows through a channel with a bump are computed, for example, in [24,25]. Specifically, the implicit
Euler time differencing and the Beam—Warming scheme for discretizing inviscid fluxes are used in [24]. The
computations in [25] are based on Godunov’s method and are performed in a wide range of Mach numbers.

The velocity (U = 3.47 m/s), pressure (p = 10° Pa), and temperature (7" = 300 K) are applied to the
inlet cross section of the channel, while mild boundary conditions (free outflow) are specified in the outlet
cross section. The inlet cross section conditions corresponded to M = 0.01. A steady state solution of the
problem is obtained by taking 5000 time steps of the time marching procedure.

Figure 4 displays level lines of the velocity magnitude. In contrast to the solution of the original
equations, a velocity distribution symmetric about the vertical axis is obtained in the case of preconditioning.
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Figure 4: Contours of the velocity magnitude in the case of the original (a)
and preconditioned (b) equations

The convergence rate of the time marching procedure is shown in the Figure 5. The original equations
are solved in conservative variables, while the preconditioned equations are computed in physical variables.
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Lines 1 and 2 depict the residuals (in physical variables) caused by discretizing the momentum equation,
while line 3 shows the residual caused by discretizing the pressure equation. In the case of preconditioning,
the prescribed residual is obtained after about 3500 iteration steps. For the original equations, the residuals
with respect to velocity and pressure are two orders of magnitude higher and the convergence rate nearly
ceases to vary after 4000 time steps.
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Figure 5: Convergence rate of the solutions of the original (a) and preconditioned (b) equations

To test the performance and accuracy of the numerical method in a wide range of Mach numbers, the
computations are performed in subsonic, transonic, and supersonic regimes. More specifically, the flow is
computed in a channel with a 10% bump (as in the underlying version) on a mesh of 144 x 32 cells at M = 0.5
(subsonic) and M = 0.675 (transonic) and in a channel with a 4% bump on a mesh of 220 x 60 cells at
M = 1.65 (supersonic).

For subsonic and supersonic regimes, Figure 6 shows level lines of the velocity magnitude at various
inlet Mach numbers. For relatively low inlet Mach numbers, the flow is nearly symmetric about the vertical
axis (Figure 6a). The weak asymmetry of the flow is associated with the leading and trailing edges of the
bump (a horseshoe vortex of weak intensity develops behind the bump). To eliminate these shortcomings, the
flow characteristics near the corner points are computed by interpolating the flow parameters from interior
nodes of the computational domain [25]. At high inlet Mach numbers, shock waves develop and interact in
the flow (Figure 6b). The inclination angles of the shocks and the level lines agree well with the numerical
data presented in [25].
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Figure 6: Contours of the velocity magnitude at M = 0.5 (a) and M = 1.65 (b)
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Figure 7 presents the Mach number distributions on the upper (line 1) and lower (line 2) walls of the
channel in various flow regimes. These distributions agree well with numerical data from [34] (as in the case
of velocity magnitude level lines, weak differences are observed on the lower wall of the channel near the
corner points).
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Figure 7: Mach number distribution along the upper (line 1) and lower (line 2) channel walls at
M =0.5 (a), M =0.675 (b), and M = 1.65 (c)

The numerical results obtained in the test problem suggest that the numerical method developed has
a sufficient accuracy for resolving characteristic features of incompressible and compressed flows. Due to the
preconditioning procedure, the convergence rate of time marching is made independent of the Mach number.
At low Mach numbers, the CPU time required for solving the preconditioned equations is more by about
15% (due to an increase in the number of arithmetic operations) than in the case of the original equations.

7.2 Flow over airfoil

Transonic flow of viscous compressible gas over RAE2822 airfoil is considered at the angle of attack of 2.4°.
The length of the computational domain is 50L (15L before the airfoil and 25L behind the airfoil), and the
width of the computational domain is 20L, where L is the cord length (L = 1 m). Unstructured triangle
mesh contains 38265 cells (Figure 8). A number of time steps is 10%.
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Figure 8: Mesh over airfoil (a) and mesh near airfoil (b)

Free stream boundary conditions (Mach number is fixed at M, = 0.725) are used on the inlet boundary.
No-slip and no-penetration boundary conditions are applied to airfoil. Airfoil is treated as adiabatic boundary.
Zero-gradient boundary conditions are applied to the outlet boundary. Slip boundary conditions are specified
on the top and bottom boundaries. Periodic boundary conditions are used in spanwise direction.

In the computations, we used four mesh levels and the mesh generation technique based on cells col-
lapsing in the direction of the shortest face (semi-coarsening method), which makes it possible to capture the
boundary layer on the airfoil.

10
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The computations are performed on an unstructured triangular mesh consisting of 11 298 nodes (version
la) and on a hybrid mesh consisting of 19 126 nodes (version 1b). A structured mesh is used near the airfoil.
In the case of a hybrid mesh, the number of cells is 24339 in the mesh of level 1 (10 692 triangles and 13647
quadrilaterals), 11484 in the mesh of level 2 (5527 triangles and 5957 quadrilaterals), 5528 in the mesh of
level 3 (2795 triangles and 2733 quadrilaterals), and 2894 in the mesh of level 4 (1599 triangles and 1295
quadrilaterals). For the meshes of levels 1.4, the domain Ay/L <5 x 10~° contained 50, 25, 13, and 6 cells,
respectively.

The aspect ratio for mesh levels 2—4 is 1:2 away from the airfoil, while near the airfoil, it is somewhat
smaller than 1:2, since some of the quadrilaterals turned into triangles when a sequence of nested meshes is
generated. The maximum aspect ratio is 1 for the mesh of level 1 (1 for both triangles and quadrilaterals),
0.47 for the mesh of level 2 (0.54 for triangles and 0.44 for quadrilaterals), 0.47 for the mesh of level 3 (0.51
for triangles and 0.45 for quadrilaterals), and 0.52 for the mesh of level 4 (0.57 for triangles and 0.48 for
quadrilaterals).

Contours of the velocity magnitude are presented in the Figure 9. Pressure coeflicient distributions
over airfoil are shown in the Figure 10. The results computed are compared with those presented in [26].
Integration pressure and wall shear stresses over airfoil surface gives drag and lift coefficient (C, = 0.8388
and Cy = 0.0197), which are in a good agreement with the experimental data.

u, m/s
[ o — |
20 44 68 92 116

Figure 9: Contours of velocity magnitude

Distribution of the friction coefficient over airfoil, shown in the Figure 11, is in a good agreement with
the data presented in [26].

Table 1 demonstrates the convergence of the iterative process on the initial segment of the residual
(from 10° to 107%) and in its entire range (from 10° to 10~%) (here, the residual norm is normalized by its
initial value). The numerator and the denominator correspond to scalar preconditioning and Jacobi block
preconditioning, respectively. The number of iterations for pre- and post-smoothing is set equal to 1. Five
smoothing iterations are executed on the coarsest mesh.

Table 1: Convergence of iteration process

Option Convergence 10° — 107 Convergence 10° — 10~ °
Number of cycles  Time, s  Number of cycles Time, s
la 311/122 839/341 947/240 2522/649
1b 234/78 1563/534 1788/918 11956/6152

Figure 12 shows the convergence factor of the multigrid method as a function of the number of mesh
levels for version la. As the number of mesh levels rises from 1 to 4, the numbers of multigrid cycles
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Figure 11: Comparison of friction coefficient
over airfoil with data [26] (symbols)

decreases from 800 to 220. For n = 1, the residual reaches an approximately constant level R ~ 1075 after
1000 multigrid cycles (a further increase in the number of iterations does not reduce the residual), while, for
n = 4, the residual monotonically decreases to R ~ 10~® beyond a small initial segment.

7.3 Speedup factor

The GPU version of the CFD code is used and validated for a variety of benchmark test cases. Numerical
calculations are performed with unstructured in-house finite volume CFD code. An equivalent solver is made
in C++ to be run in a CPU for benchmarking purposes.

The benchmark problems include flat plate boundary layer (problem A1), flow over wedge at Mach
number of 2 (problem A2), flow around NACAQ0012 airfoil (problem A3), flow around RAE2822 airfoil (prob-
lem A4), flow around conus at Mach number of 1.6 (problem A5), flow and heat transfer behind back-forward
step (problem T1), lib-driven cavity flow and heat transfer (problem T2). Speedup factors of the problems
A2, A5, T1 and T2 are presented in the paper for reference only.

Laminar flow calculations of flat plate boundary layer are performed on one core of AMD Phenom 2.3

12
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GHz and one module of Tesla S1070 platform consisting of 240 cores with 1.44 GHz. The mesh consists of
111670 nodes. Computational time of one iteration is 462.6 s on CPU and 11.5 s on GPU, and speedup is

40.2.

Computational time of solution of one iteration on CPU and GPU and speedup are shown in the
Table 2. Calculations are performed on one core of AMD Phenom 2.3 GHz and one module of Tesla S1070,
consisting of 240 cores with 1.44 GHz. Speedup factor changes from 22 (problems A4 and A5) to 60 (problem

T1).

Table 2: Computational time and speedup

Problem Number of nodes Time on CPU,s Time on GPU,s Speedup
Al 111670 462.6 11.5 40.2
A2 95000 288.8 12.3 23.5
A3 30836 68.1 1.6 42.6
A4 38265 141.9 6.3 22.5
A5 36333 130.8 5.8 22.4
T1 138003 295.3 4.9 59.7
T2 9801 39.9 1.8 22.6

The flat plate turbulent boundary layer problem is solved on various meshes. The turbulent flow calcu-
lations are based on CPU Xeon X5670 2.93 GHz and one module of Tesla S2050 platform. The computational
time in seconds and speedup of calculations are shown in the Table 3 for one iteration. Increasing a number
of nodes from 10° to 107, speedup increases on 10%.

Table 3: Time and speedup for flat plate problem

Number of nodes CPU GPU S
1.3-10° 0.140 0.003 46.67
1.3-10° 1.406 0.026 54.08
6.6 - 10° 7.091 0.126 56.28
1.3-107 14.06  0.251  56.02

13
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Speedup of solution on GPUs with respect to the solution on central processor unit (CPU) is compared.
Performance measurements show that numerical schemes developed achieve 20 to 50 speedup on GPU hard-
ware compared to CPU reference implementation. The results obtained provide promising perspective for
designing a GPU-based software framework for applications in CFD.

8. Conclusion

A numerical method was developed for computing steady inviscid and viscous compressible gas in a wide
range of Mach numbers. The accuracy and convergence rate of the method are independent of the Mach
number. The original and preconditioned equations are discretized by applying the finite volume method on
an unstructured mesh. An explicit scheme is used for time differencing, while the inviscid and viscous fluxes
are discretized with the help of second order accurate schemes. Preconditioning is switched on depending
on the local Mach number or the local pressure field (specifically, the preconditioned equations are always
solved for the incompressible fluid model).

A multigrid method was developed for solving the Euler and Navier—Stokes equations on unstructured
and hybrid meshes. The method relies on a modified form of the restriction operator and involves the genera-
tion of a sequence of nested meshes via collapsing faces (semi-coarsening method). The method for generating
meshes of different levels accurately takes into account the features of the problem (the boundary layer on the
wall), preserves the topology of the original mesh, and produces high quality meshes in the near wall domain
(reasonable stretching and obliqueness of the cells). The capabilities of the approach are demonstrated by
computing inviscid and viscous compressible flows around an airfoil on meshes of various types and dimen-
sions. The multigrid method, in conjunction with Jacobi block preconditioning, produce a prescribed level
of the residual after considerably fewer iteration steps than in the case of scalar preconditioning.

Modern graphics processing units (GPU) provide architectures and new programming models that
enable to harness their large processing power and to design computational fluid dynamics (CFD) simulations
at both high performance and low cost. Possibilities of the use of GPUs for the simulation of external
and internal flows on unstructured meshes are discussed. The finite volume method is applied to solve
three-dimensional unsteady compressible Euler and Navier—Stokes equations on unstructured meshes with
high resolution numerical schemes. CUDA technology is used for programming implementation of parallel
computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the results
computed are compared with experimental and computational data. Approaches to optimization of the CFD
code related to the use of different types of memory are considered.
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