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Abstract 

As low-thrust thrusters were applied in Deep Space 1 spacecraft successfully, interplanetary low-thrust 

orbit design and optimization is becoming increasingly popular. However, orbit design and optimization 

is a very challenging and time-consuming task. So a suitable preliminary orbit, which is beneficial for 

optimizers to converge to a more accurate trajectory quickly, is extremely important. The shape-based 

method is an effective preliminary orbit design method. However, the traditional shape-based methods 

without considering the first order optimal necessary conditions cannot guarantee an optimal preliminary 

orbit, and the thrust direction is constrained to be tangential. In this paper, an improved shape-based 

method using Fourier series is proposed, which can avoid these shortages above mentioned easily. Firstly, 

the spacecraft dynamics model under the polar coordinate is given. Secondly, the first order necessary 

conditions are derived from the Hamilton function, and the optimal control problem is converted to a 

nonlinear programing problem about Fourier series coefficients. Thirdly, Matlab fmincon function is 

used to solve the nonlinear programing problem. Lastly, a simple Earth-Mars rendezvous is used to 

depict the proposed method’s feasibility in interplanetary low-thrust orbit design, and some comparison 

results with traditional shape-based methods are utilized to prove the advantages of the proposed method 

in offering initial guess for optimizers. 

 

1. Introduction 

In 1998, electric propulsion thrusters were applied in NASA’s Deep Space 1 mission successfully, which verified 

the potential value of the continuous low-thrust system. Recently, interplanetary continuous low-thrust orbit design 

and optimization is becoming increasingly popular. However, it is a very challenging and time-consuming task. 
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Particularly, continuous low-thrust orbit design consists of two phases: preliminary design phase and precise design 

phase. To pursuit a faster optimization speed and a more accurate trajectory, preliminary design phase is expected to 

provide an efficient initial trajectory guess for optimizers. Shape-based (SB) method is one of the most efficient 

preliminary methods. In SB methods, some functions are assumed to present the spacecraft trajectory, and then 

boundary conditions are used to compute the function parameters, finally the needed thrust during motion can be got 

analytically. 

Now many kinds of SB methods have been proposed by researchers. For instance, Petropoulos et al. developed 

an exponential sinusoid (ES) method for two dimensional interplanetary transfer orbit design problem in reference[1-

2]. The ES method constrains the thrust direction to be tangential, which has a function form given in Eq. (1): 

 
 1 2sin

0

k k
r k e

 
  (1) 

where 0k , 1k , 2k and  are constants. Izzo[3] utilized this method to investigate the multi-revolution Lambert’s 

problem, and simplified the planet and low-thrust trajectory design procedure. Cui and his partners[4] proposed a new 

search approach for launch window of low-thrust gravity-assist mission based on ES method, and the proposed 

algorithm has fewer searching variables and more efficient compared with traditional SB algorithms. But the ES 

method cannot satisfy the circle terminal orbits unless thrusters provide impulse propulsion; besides convergent shape 

parameters cannot be solved as other constraints are introduced.  

Zheng et al. [5] proposed a new trajectory shape called logarithmic spiral (LS) method, which has a function form 

given in Eq. (2): 

 
 0

0

q
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 
   (2) 

where 0r  is initial geocentric distance, 0  is initial phase angle, and q  is a constant that need to design. The 

feasibility and essential characteristics of the logarithmic spiral orbit are analyzed. And analytical geocentric distance 

r  expression and phase angle   expression about flight time subject to a tangential thrust are derived. But the LS 

method cannot satisfy the terminal constraints as same as the ES method.  

To overcome these disadvantages mentioned above, Wall et al.[6-7] developed a two-dimensional, seven-parameter 

inverse polynomial (IP) method, which is assumed to be a form given in Eq. (3): 

 
2 3 4 5 6

1
r

a b c d e f g     


     
 (3) 

where  , , , , , ,a b c d e f g  are shape parameters solved through initial and terminal conditions. But the thrust 

direction is also constrained to be tangential in the IP method, and it cannot handle the thrust constraint very well. 

Shang[8] proposed a semi-analytical Lambert algorithm based on the N-degree IP approach in order to improve the 

precision of primary design for an interplanetary low-thrust transfer trajectory.  

Ehsan and Abdelkhalik[9-10] proposed a new shape-based trajectory design method using Fourier series. With a 

hypothesis of tangential thrust, a preliminary orbit that satisfy maximum thrust constraint is designed by this SB method. 

In a word, all recent SB methods design spacecraft trajectory based tangential thrust assumption, and cannot 

guarantee the designed trajectory is optimal one without the first order optimal necessary conditions. So an improved 

shape-based method using Fourier series is proposed in this paper, which can avoid these shortages above mentioned 

easily. Firstly, the spacecraft dynamics model under the polar coordinate is given. Then, the first order necessary 

conditions are derived from the Hamilton function, and the optimal control problem is converted to a nonlinear 

programing problem about Fourier series coefficients. Lastly, a simple Earth-Mars rendezvous is used to depict the 

proposed method’s feasibility in interplanetary low-thrust orbit design, and some comparison results with traditional 

shape-based methods are utilized to prove the advantages of the proposed method in offering initial guess for optimizers. 
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2. Spacecraft orbital model 

In the polar coordinate, the spacecraft orbital motion without considering any perturbation and celestial bodies’ 

rotation can be written as Eq. (4) 

 
2 2 sin

cos
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u r v r a

v uv r a
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  (4) 

where, as shown in Fig. 1, r  is the magnitude of the position vector r ,   is the polar angle, u  is the magnitude 

of spacecraft radial velocity vector u , v  is the magnitude of spacecraft circumferential velocity vector v ,   is 

the gravitational parameter, a  is the spacecraft thrust-acceleration magnitude,   is the steering angle, and   is 

the flight path angle. 
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Figure 1 Trajectory variables 

 

3. Shape-based method using Fourier series 

3.1 Index performance and boundary conditions 

Usually the index performance in interplanetary low-thrust orbit design is set to minimize the flight time or fuel 

consumption. In this paper, we choose minimum characteristic velocity (i.e. minimum fuel consumption), as shown 

in Eq. (5) 

 min
f

i

t

t
J V a dt      (5) 

To accomplish spacecraft manoeuver mission successfully, some constraints, as shown in Eq. (6), should be 

reached. 

 , , ,, , ,
,i f i f i fi f i f i f

P P V V A A       (6) 

where  , ,P V A  represent spacecraft’s position, velocity and acceleration conditions respectively;  ,i f  

represent initial and terminal moment respectively. 
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3.2 Traditional Fourier series (TFS) method 

In a fixed-time problem, as shown in Fig. 1, it is assumed that the thrust is aligned along or against the velocity 

vector, i.e. πn   , where 0,1n   . 

From the fourth equation of Eq. (4), one can write 

 
cos

rv uv
a

r 


  (7) 

Substituting the Eq. (7) into the third equation of Eq. (4), one can write 

 

2

2
tan
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u

r r r
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where the tangential thrust assumption can be written as 

 tan tan
u r

v r
 


    (9) 

Substituting the first and second equations of Eq. (4) and the tangential thrust assumption into Eq. (8), one can be 

rewritten as 

      
3

2 22 0r r r rr r           (10) 

According to Fourier series theory, the radius r  and the polar angle   can be approximated as follows: 
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where x  means  ,r  , xn  is the number of Fourier terms,  0 , ,x xi xia a b   are Fourier coefficients, T  is 

the total flight time. 

Substituting the state approximations Eq. (11) into Eq. (10), the differential is converted to a nonlinear algebraic 

equation, in which the only unknowns are the Fourier coefficients and the independent time variable: 

  0 , , 0x xi xiF a a b t   ；   (12) 

It can be found that Eq. (5), Eq. (6) and Eq. (12) result a nonlinear programming problem about Fourier 

coefficients. 

 

3.3 Improved Fourier series (IFS) method 

In terms of Eq. (4) and Eq. (5), the Hamilton function is written as 

 

2
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  (13) 

Based on the optimal control theory, co-state equations and control equations are shown as 
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With 
2 2X u r v r    and Y v uv r  , the third and fourth equation can be rewritten as 

 
= sin
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  (16) 

From Eq. (16), the spacecraft thrust-acceleration magnitude can be solved 

 
2 2a X Y    (17) 

Meanwhile, the thrust-acceleration direction could be defined by the results of sin  and cos . 

From Eq. (15) and Eq. (16), one can write 
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Solving Eq. (18), we can get the expressions of co-state variables  ,u v   
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 (19) 

According to the second and fourth equation of Eq. (14), the value of constant   can be represented as 

  2v u v
i

u v r        (20) 

According to the first and fourth equation of Eq. (14), one can wrote 

  3 2 0r v u ur rv u v           (21) 

where co-state variable r  can be solved through the third equation of Eq. (14) 

 r v u

v

r
     (22) 

So all co-states variables  , ,r u v       can be expressed as function of state variables  ,r  . 

Substituting the state approximations Eq. (11) into Eq. (21), the differential is converted to a nonlinear algebraic 
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equation, in which the only unknowns are the Fourier coefficients and the independent time variable: 

  0 , , 0opt x xi xiF a a b t   ；   (23) 

It can be found that Eq. (5), Eq. (6) and Eq. (23) result a nonlinear programming problem about Fourier 

coefficients. 

 

4. Spacecraft orbit design process using IFS method 

The spacecraft manoeuver orbit design process using IFS method is shown in Fig. 2, in which FCs is short for 

‘Fourier coefficients’. 

The fmincon function is a MATLAB command used to solve multi-variable, nonlinear, optimal problem with 

constraints. According to fmincon function requirement, it is necessary to obtain a set of initial guess for Fourier 

coefficients. In reference [9], some rough approaches used to gain initial guess are proposed. A constraint about Fourier 

terms 2xn   is set to satisfy the boundary conditions. Besides, although there is no upper limit on the number of 

included Fourier terms, the computational efficiency and precision is an important consideration. 

 

Initial and terminal 

conditions

Initial guess for FCs MATLAB fmincon

Motion equation

Fourier series 

expansions

Algebraic equation 

about FCs

Constraints & 

performance index

Computed FCs

Hamilton function 

 first order optimal 

necessary conditions

Direct collocation 

method
Final orbit & thrust

Analytical orbit & 

thrust expressions

 

Figure 2 Flow chart of orbit design using IFS method 
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In process of IFS method for designing interplanetary low-thrust trajectory, a cubic polynomial function is used 

to get initial guess for Fourier coefficients in this paper. Based on the initial guess, new Fourier coefficients are 

computed using fmincon function. Then, analytical orbit and thrust expressions about Fourier coefficients are found. 

These expressions are used to offer initial guess for optimizers. After the preliminary design phase, trajectory 

optimization is required. Here, direct collocation method is applied to optimized spacecraft maneuver orbit. In direct 

collocation method, the optimal control problem is converted into a nonlinear programming problem. The flight time 

history is discretized into N intervals, and two endpoints of each intervals are called ‘node’. Polynomial interpolants 

are used to approximate solutions over intervals of the total time history. These polynomials are computed using 

collocation point selection based on Jacobi polynomials. The resulting polynomial interpolants take on the form of a 

family of modified-Gaussian quadrature rules known as the Gauss-Lobatto rules [11]. 

 

5. Simulation example 

5.1 Earth-Mars transfer 

The test case has been performed at MATLAB 2014a on an Intel Core i5 2.6GHz with Windows 8. 

The continuous low-thrust Earth-Mars transfer is considered. In this case, canonical units are used, such as 1 

distance unit (DU) is 1 AU and 2π time unit (TU) is 1 year. The boundary conditions and input parameters are listed in 

Table 1, in which revN  means the number of revolutions about the Sun and nodN  is the number of nodes in direct 

collocation method. 

Fig. 3 and Fig. 4 are spacecraft’s transfer orbit and thrust acceleration profile using different SB methods 

respectively. Fig. 5 and Fig. 6 are optimized transfer orbit and thrust acceleration profile using direct collocation 

method based on different initial guesses from different SB methods. Table 2 is simulation results using different initial 

guesses. 

 

Table 1: Boundary conditions and input parameters for Earth-Mars transfer 

Boundary conditions Input parameters 

ir  1 DU revN  1 

i  0 rad rn  6 

fr  1.5234 DU n  6 

f  9.831 rad T  13.447 TU 

ir  0 DU/TU nodN  151 

i  1 rad/TU   

fr  0 DU/TU   

f  0.5318 rad/TU   
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Figure 3 Transfer orbit using different SB methods 

 

Figure 4 Thrust acceleration profile using different SB methods 

 

Figure 5 Optimized transfer orbit using direct collocation method 
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Figure 6 Optimized thrust acceleration profile using direct collocation method 

 

Table 2 Simulation results using different initial guesses 

 V before optimization V after optimization 

IFS method 0.1896 DU/TU 0.18787 DU/TU 

TFS method 0.2514 DU/TU 0.18908 DU/TU 

IP method 0.1951 DU/TU 0.18789 DU/TU 

Hohmann transfer 0.1877 DU/TU 

 

4.2 Simulation analysis and conclusion 

1) Compared with other SB methods, which have to suppose that acceleration direction is parallel with velocity 

direction, the IFS method do not need to constrain the relation about acceleration direction and velocity direction. 

As shown in Fig. 2, little difference between acceleration direction and velocity direction can be found in each 

points. 

2) Due to less number of shape parameters, the thrust acceleration profile using IP method is smoother than others. 

And the thrust acceleration profile using TFS method is the roughest as shown in Fig. 3 and Fig. 5. Except TFS 

method, the acceleration profile before and after optimization varied unobviously, because of the unobvious 

decrease of characteristic velocity. 

3) In Table 2, it is evident to find IFS method can provide better initial guess for optimizers. Either the preliminary 

design phase or the precise design phase, the IFS method can gain the minimum fuel consumption transfer orbit.  

Acknowledgement 

This work was supported by National Natural Science Foundation of China (grant 11272255). 

 



WANG Xuefeng, FANG Qun 

            

10 

Reference 

[1] Petropoulos A E and Longuski J M. 2004. Shape-based algorithm for automated design of low-thrust, gravity-

assist trajectories. Journal of Spacecraft and Rockets. 41(5):787-796. 

[2] Petropoulos A. E. 2001. Shape-based algorithm for the automated design of low-thrust, gravity assist trajectories. 

PHD thesis. West Lafayette: Purdue University,  

[3] Izzo D. 2006. Lambert’s Problem for Exponential Sinusoids. Journal of Guidance, Control and Dynamics. 29(5): 

1242-1245. 

[4] Cui P Y, Shang H B and Luan E J. 2008. A Fast Search Algorithm for Launch Window of Interplanetary Low-

Thrust Exploration Mission. Journal of Astronautics. 29(1): 40-45. 

[5] Zheng L L, Yuan J P and Zhu Z X. 2010. Logarithmic spiral-based non-keplerian orbit design. Journal of 

Astronautics. 31(9):2075-208. 

[6] Wall B J and Conway B A. 2009. Shape-based approach to low-thrust rendezvous trajectory design. Journal of 

Guidance, Control and Dynamics, 32(1):95-101. 

[7] Wall B J. 2008. Shape-based approximation method for low-thrust trajectory optimization. In: AIAA/AAS 

Astrodynamics Specialist Conference and Exhibit, Honolulu, USA, August 18-21. 

[8] Shang H B, Cui P Y, Qiao D and Xu R. 2010. Lambert solution and application for interplanetary low-thrust 

trajectories. Acta Aeronautica Et Aeronautica Sinica. 31(9):1752-1757. 

[9] Taheri E and Abdelkhalik O. 2012. Shaped-based approximation of constrained low-thrust space trajectory using 

Fourier series. Journal of Spacecraft and Rockets. 49(3):535-545. 

[10] Abdelkhalik O and Taheri E. 2012. Approximate on–off low-thrust space trajectories using fourier series. Journal 

of Spacecraft and Rockets. 49(5):962-965. 

[11] Herman A L and Conway B A. 1996. Direct optimization using collocation based on high-order Gauss-Lobatto 

quadrature rules. Journal of Guidance, Control and Dynamics. 19(3):592-599. 


