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Abstract 

A step-by-step procedure for the identification of the Chaboche model´s parameters applied to a copper-base 
alloy that may be considered as a cost efficient material for a rocket engine combustion chamber inner liner is 
presented in this paper. Experimental data from a strain-controlled uniaxial low cycle fatigue test and a stress 
relaxation test are used for the identification of the model´s parameters. In addition to the fatigue test and the 
stress relaxation test, a dwell test with a hold period of 600 s at extreme strain amplitude in tension and 
compression is considered for the assessment of the accuracy of the identified model parameters. The 
comparisons of the predictions of the model with optimized parameters to the above mentioned experiments 
at 900 K for the considered copper-based alloy are presented. 
 

1 Introduction 

The strong demand for light-weight structures for space transportation systems leads to a close-to-the-limit design of 
the components – including the rocket engine. The inner liner of a regeneratively cooled wall of a main stage rocket 
combustion chamber is extremely loaded by the high temperature of the hot gas and the pressure difference between 
the coolant and the hot gas. An understanding of the material behaviour at such conditions is very important for the 
fatigue life prediction of the structure. 
Among the several viscoplasticity constitutive models proposed for predicting material behaviors at high 
temperatures, the unified Chaboche viscoplasticity model has been widely accepted. The unified Chaboche 
constitutive model has received much attention due to its simplicity to comprehend and use. The Chaboche model is 
capable of simulating cyclic plasticity, strong deformation rate effects, and other time dependent processes such as 
creep, stress relaxation and static/dynamic recovery. 
Although the Chaboche model is widely used, few references in literature [1] [2] provide detailed information on 
whose tests have to be carried out and how one has to process the experimental data to determine a complete set of 
material parameters to be used within the model. 
The purpose of the present paper is to provide the reader with an as detailed as possible guideline on the 
identification of the unified Chaboche model using uniaxial tests data. A step by step procedure in the 
characterization of the model parameters is suggested. 
A copper base alloy that may be used as a cost efficient material for a rocket engine combustion chamber inner liner 
is considered for this work. Experimental data from a strain-controlled uniaxial low cycle fatigue and from a uniaxial 
stress relaxation test are used to illustrate the material parameter identification procedure. 
In addition to the fatigue test and the stress relaxation test, a strain-controlled uniaxial dwell test with holding periods 
in tension and compression is considered for the assessment of the accuracy of the identified model parameters. The 
comparison of the predictions of the model with the optimized parameters to the data from the above mentioned tests 
at 900 K are presented in this paper. 
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2 Material model 

2.1 Constitutive equations of the unified Chaboche model 

The decomposition of the total strain ε can be assumed as  

 𝜺𝜺 = 𝜺𝜺𝑒𝑒 + 𝜺𝜺𝑡𝑡ℎ + 𝜺𝜺𝑝𝑝 (1)  

 
with εe the elastic strain, εth the thermal strain , and εp the inelastic strain except the thermal strain. 
 
At a constant temperature and within the uniaxial small-strain hypothesis, the resulting stress increment �̇�𝜎 is given in 
equation (2) according to Hook´s law for an isotropic elastic material: 
 

 �̇�𝜎 = 𝐸𝐸�𝜀𝜀̇ − 𝜀𝜀�̇�𝑝� (2)  

 
with E the Young´s modulus of the material. 
 
The uniaxial form of the Chaboche model as described in [3] is adopted in the present paper. The basic equation is 
the flow rule, which determines the evolution of the inelastic strain as a function of the external stress σ and internal 
variables such as the back stress χ and the drag stress R: 
 

 𝜀𝜀�̇�𝑝 = 〈
𝑓𝑓
𝑍𝑍
〉𝑛𝑛 sgn(𝜎𝜎 − 𝜒𝜒) (3)  

 
where the McCauley brackets 〈∙〉 are here defined as  

 〈𝑥𝑥〉 = �𝑥𝑥,      𝑥𝑥 > 0,
0,      𝑥𝑥 ≤ 0. (4)  

 
and where the sign function sgn is defined as 
 

 sgn(𝑥𝑥) = �
1, 𝑥𝑥 > 0,
0, 𝑥𝑥 = 0,
−1, 𝑥𝑥 < 0,

 (5)  

 
The yield criterion is given by 
 

 𝑓𝑓 = 𝐽𝐽(𝜎𝜎 − 𝜒𝜒) − 𝑅𝑅 − 𝑘𝑘 (6)  

 
where k corresponds to the initial size of the yield surface and is referring to the true elastic limit of the material and 
J determines the scalar equivalent of the deviatoric stress state: 
 

 𝐽𝐽(𝜎𝜎 − 𝜒𝜒) = |𝜎𝜎 − 𝜒𝜒| (7)  

 
The elastic domain is defined by f ≤ 0 and the inelastic domain by f > 0.  
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2.2 Hardening terms 

2.2.1 Kinematic hardening 

The kinematic hardening χ is used to capture directional dependent effects such as the Bauschinger effect due to the 
plastic flow under cyclic loading. In a three dimensional principal stress space, it corresponds to a translation of the 
elastic domain. It may have multiple terms as follows: 
 

 𝜒𝜒 = �𝜒𝜒𝑖𝑖

𝑀𝑀

𝑖𝑖=1

 (8)  

 
The evolution equation of the back stress χ for non-linear kinematic hardening used in the Chaboche model was 
originally introduced by Armstrong and Frederik [4] 
 

 �̇�𝜒𝑖𝑖 = 𝐶𝐶𝑖𝑖𝜀𝜀�̇�𝑝 − 𝛾𝛾𝑖𝑖𝜒𝜒𝑖𝑖�̇�𝑝 (9)  

 
where p is the accumulated plastic strain and defined as 
 

 �̇�𝑝 = �𝜀𝜀�̇�𝑝� (10)  

 
The stationary values of χi are given by Ci/γi while the values of γi indicate the speed with which the stationary values 
are reached. For linear kinematic hardening, γi = 0. Residual stresses may be taken into account by taking non-zero 
initial values 𝜒𝜒𝑖𝑖0, where its values may depend on the loading history.  

2.2.2 Isotropic hardening 

The isotropic hardening R is used to describe directionally independent effects such as the change in the size of the 
yield surface during cyclic loading as for the cyclic hardening or for the cyclic softening. In a three dimensional 
principal stress space, it corresponds to an expansion or a contraction of the elastic domain around its origin. As for 
the kinematic hardening, it may have multiple terms as follows: 
 

 𝑅𝑅 = �𝑅𝑅𝑗𝑗

𝑁𝑁

𝑗𝑗=1

 (11)  

 
The evolution of Rj follows the accumulated plastic strain p. The evolution equation of Rj for a non-linear isotropic 
hardening is defined as 

 �̇�𝑅𝑗𝑗 = 𝑏𝑏𝑗𝑗�𝑄𝑄𝑗𝑗 − 𝑅𝑅𝑗𝑗��̇�𝑝 (12)  

 
where Qj is the stationary value of Rj while bj indicates the speed with which the stationary value is reached. 
 
For linear isotropic hardening, the evolution equation of Rj is  
 

 �̇�𝑅𝑗𝑗 = 𝑅𝑅0,𝑗𝑗�̇�𝑝 (13)  

 
with R0,j is the asymptotic value of the isotropic hardening Rj. 
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2.3 Viscous behaviour 

A viscous overstress function is considered to describe the rate dependency of the stress. The rate dependency of the 
stress and therefore the creep effect is accounted for within the model in the form of the Norton creep law [5] as 
follows 

 𝜎𝜎𝑣𝑣 = 𝑍𝑍�̇�𝑝1/𝑛𝑛 (14)  

where, σv is the viscous stress and Z and n are the viscous parameters. 
 
At each moment the stress is given by 

 𝜎𝜎 = 𝜒𝜒 + 𝜈𝜈(𝑅𝑅 + 𝑘𝑘 + 𝜎𝜎𝑣𝑣) (15)  

 
where ν = sgn(σ - χ) = ±1 according to the direction of the flow. 
 
2.4 Model´s parameters 

From this model description, the parameters shown in Table 1 have to be identified. 
 

Table 1: Typical parameters to identify with the use of Chaboche model 

Parameters Unit Description 
E, ν MPa, dimensionless Young´s modulus, Poisson ratio 
k MPa True elastic limit 
Qj, bj MPa, dimensionless Non-linear isotropic hardening (N or N-1 times) 
R0 MPa Linear isotropic hardening (0 or 1 time) 
Ci, γi MPa, dimensionless Kinematic hardening (M times) 
Z, n MPa, dimensionless Viscosity 
 

3 Experimental data 

3.1 Defined tests 

The identification of the Young´s modulus and the determination of the parameters defining the kinematic hardening 
and isotropic hardening of the material are based on stress-strain measurements from uniaxial low cycle fatigue tests. 
The determination of the true elastic limit and the viscosity parameters has been performed using time dependent 
stress measurements during uniaxial stress relaxation tests performed at high temperatures. A representative hold 
period has been considered for the stress relaxation tests. 
In addition to the cyclic tests and the stress relaxation tests, uniaxial cyclic dwell tests with identical hold periods in 
tension and compression have been carried out at high temperatures to provide experimental data for the assessment 
of the accuracy of all defined parameters values. 
The uniaxial low cycle fatigue tests were performed up to failure in strain-controlled mode with a fixed total strain 
range of 2 %, strain ratio of -1, and at strain rate of 0.2 %/s. A trapezoidal wave form was used as the load path.  
The uniaxial stress relaxation tests have been performed at a strain level of 1% with a loading rate of 0.2 %/s. The 
strain has been hold at that level for a period of 600 s. 
The uniaxial dwell tests have been performed in strain-controlled mode for a total strain range of 2 %, a strain ratio 
of -1, and a strain rate of 0.2 %/s. For every cycle, the strain has been holding at extreme values in tension and 
compression for a period of 600 s. 
The strain amplitude value of 1 % and the hold period of 600 s are quite representative of the load conditions of a 
combustion chamber wall in service. 
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3.2 Test specimen 

The test samples used for the different tests show the same geometry and dimensions. The shape and the dimensions 
of the rotatory-symmetric test specimens are illustrated in Figure 1.  
 

 

Figure 1: Drawing of the test specimen (geometry and dimensions) 

 
3.3 Presented data 

Although various temperatures have been defined for the characterization of the mechanical behaviour of the 
investigated cost efficient copper alloy, only the results related to the temperature of 900 K, at which the viscous 
behaviour of the material should be significant, are reported in the present paper to illustrate the step-by-step 
procedure adopted to identify the unified Chaboche constitutive model´s parameters of the tested copper alloy. 

4 Identification of the parameters 

The identification of the material constants is performed adopting a step-by-step procedure. Initial values of the 
parameters are estimated processing the experimental data. These initial values are then used in an optimization 
routine based on a nonlinear least square fit to get accurate and reliable optimized material parameters. 
The estimation of the initial parameters requires representative, quality experimental data so that a given parameter 
may be estimated using the test results sensitive to that particular parameter. 
 
4.1 Young´s modulus 

The Young´s modulus E corresponds to the slope of the initial linear region of the stress-strain curve from a uniaxial 
monotonic tensile test. The plot of the first-quarter cycle of the first stress-strain hysteresis loop has been used as an 
alternative to a monotonic tensile test curve in the present work. 
 
4.2 Isotropic hardening parameters 

Experimental data from the low cycle fatigue test performed at 900 K show a rapid decrease of the stress range over 
the first few cycles followed with a steady decrease of the stress range when the number of cycles increases.  
 
Assuming the change in the size of the yield surface is essentially isotropic, the evolution of the stress range with the 
number of cycles can be used to estimate the isotropic hardening parameters. To capture the particular evolution of 
the stress range with the number of cycles for the investigated copper alloy which has shown cyclic softening, the 
evolution of the isotropic hardening R associated with the contraction of the yield stress (present case) is defined as 
the sum of a non-linear isotropic hardening term R1 (equation 12) and a linear isotropic hardening term R2 (equation 
13) as follows 
 

 
�̇�𝑅 = 𝑅𝑅1̇ + 𝑅𝑅2̇ = 𝑏𝑏(𝑄𝑄 − 𝑅𝑅1)�̇�𝑝 + 𝑅𝑅0�̇�𝑝 

 
𝑅𝑅1 = 0 for 𝑝𝑝 = 0 

(16)  

 
where Q is the stationary value of R1 while b indicates the speed with which the stationary value is reached. R0 is the 
asymptotic value of the isotropic variable R. 
The evolution of the isotropic hardening R may be obtained by integrating equation 16 with respect to time as 
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 𝑅𝑅 = 𝑅𝑅1 + 𝑅𝑅2 = 𝑄𝑄(1 − 𝑒𝑒−𝑏𝑏𝑝𝑝) + 𝑅𝑅0𝑝𝑝 (17)  

 
While R1 describes the initial short-range transient isotropic hardening where Q is the stationary value of R1 and b 
indicates the speed with which the stationary value is reached, R2 is the asymptotic value of the isotropic variable R 
at large values of accumulated plastic strain p.  
As the change in the size of the yield surface is assumed essentially isotropic, the evolution of the stress range with 
the number of cycles can be used to estimate R0, Q and b.  
The evolution of R is related to the change in stress range during the cyclic tests via 
 

 𝑅𝑅 ≅
∆𝜎𝜎𝑖𝑖 − ∆𝜎𝜎1

2
 (18)  

 
where ∆σ1 and ∆σi are the stress ranges for the first and ith cycles, respectively.  
 
Defining ∆εp = ∆ε - ∆σ/E and assuming p ≈ 2N∆εp [1], the parameter R0 is obtained as the slope in the regression of 
R vs. p for intermediate to large values of the accumulated plastic strain as shown in Figure 2. The deviation of R 
from the asymptotic behaviour at very large values of p is assumed to be the result of the accumulation of large 
damage in the material that later induced the failure of the sample. As this behaviour is assumed to be more related to 
material damage than the mechanical behaviour of the material, the corresponding data are not considered for the 
identification of the isotropic hardening parameters. 
 

 

Figure 2: Plot used in the calculation of the asymptotic value R0 of the isotropic hardening R 

 
Considering the lower accumulated plastic strain region e.g. low values of p, and differentiating equation 17 with 
respect to p, rearranging and taking natural logs of both sides gives  
 

 ln �𝑅𝑅0 −
𝜕𝜕𝑅𝑅
𝜕𝜕𝑝𝑝
� = −𝑏𝑏𝑝𝑝 + ln(−𝑏𝑏𝑄𝑄) (19)  

 
For low values of p, the values of ∂R/∂p can be approximated by fitting the data (R, p) and differentiating the 
obtained equation of the fit relative to p. Therefore, plotting ln(R0-∂R/∂p) vs. p as shown in Figure 3 allows the 
identification of b from the slope of the fit straight line, and Q from the y-axis intercept.  
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Figure 3: Plot used for the identification of the values Q and b for R1 

 
4.3 Kinematic hardening parameters 

In the present paper, the kinematic hardening χ is defined as the sum of two terms 
 

 𝜒𝜒 = �𝜒𝜒𝑖𝑖

2

𝑖𝑖=1

= 𝜒𝜒1 + 𝜒𝜒2 (20)  

 
The first part of the kinematic hardening χ1 describes the transient region of the inelastic deformation, while the 
second part χ2 describes the behaviour at greater inelastic deformations when χ1 has reached the saturation value 
C1/γ1. For a given load as in tension-compression, these terms may be estimated by integrating equation (9) with 
respect to time as 

 𝜒𝜒𝑖𝑖 = 𝜈𝜈
𝐶𝐶𝑖𝑖
𝛾𝛾𝑖𝑖

+ �𝜒𝜒𝑖𝑖0 − 𝜈𝜈
𝐶𝐶𝑖𝑖
𝛾𝛾𝑖𝑖
� exp �−𝜈𝜈𝛾𝛾𝑖𝑖�𝜀𝜀𝑝𝑝 − 𝜀𝜀𝑝𝑝0�� (21)  

 
where ν = sgn(σ - χ) = ±1 according to the direction of the viscoplastic flow, 𝜀𝜀𝑝𝑝0 and 𝜒𝜒𝑖𝑖0 correspond to the initial 
value, for example at the beginning of each plastic flow, of εp and 𝜒𝜒𝑖𝑖 ,  respectively. 
 
Since the transformation of the yield surface following a monotonic loading is essentially kinematic, data from a 
monotonic test or from the first hysteresis loop of a cyclic test can be used to determine the kinematic parameters Ci 
and γi. 
 
Substituting equation (17), (20) and (21) into equation (15) gives 
 

 𝜎𝜎 = �𝜒𝜒𝑖𝑖�𝜀𝜀𝑝𝑝,𝜒𝜒𝑖𝑖0, 𝜀𝜀𝑝𝑝0�
2

𝑖𝑖=1

+ 𝜈𝜈�𝑅𝑅𝑗𝑗(𝑝𝑝)
2

𝑗𝑗=1

+ 𝜈𝜈𝑘𝑘 + 𝜈𝜈𝜎𝜎𝑣𝑣 (22)  

 
The stress and strain measurements from the first cycle of the uniaxial low cycle fatigue test are used for the 
identification of the kinematic hardening parameters C1, γ1, C2, γ2. As shown in Figure 4, data from two sections of 
the first hysteresis loop from the cyclic test are commonly used to get a first approximation of these parameters: data 
from the first tensile quarter cycle (section AB) [2] [6] [7] or data from the first tensile half cycle (section CD) [1] 
[8]. 
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Figure 4: Plot of the first cycle from the uniaxial low cycle fatigue test showing the two sections commonly used to 
get a first approximation of the kinematic hardening parameters 

 
Although the first tensile half cycle provides more data over a larger strain range for the approximation of the 
kinematic hardening parameters, the difficulty in assessing the initial values of the kinematic hardening 𝜒𝜒𝑖𝑖0 and 𝜒𝜒20 
make the use of data from the first tensile quarter cycle more convenient and more reliable. 
 
Indeed, if only data from the first quarter of the first stress-strain hysteresis loop are used, therefore σ - χ  > 0 with 
ν = sgn(σ - χ) = 1, p = εp , 𝜀𝜀𝑝𝑝0 = 0, and  𝜒𝜒𝑖𝑖0 = 0. 
 
For the first tensile quarter cycle from the cyclic test, equation (21) is simplified to 
 

 𝜒𝜒𝑖𝑖 =
𝐶𝐶𝑖𝑖
𝛾𝛾𝑖𝑖
�1 − exp�−𝛾𝛾𝑖𝑖𝜀𝜀𝑝𝑝�� (23)  

 
Substituting equation (23) into equation (22) gives 
 

 𝜎𝜎 = �𝜒𝜒𝑖𝑖�𝜀𝜀𝑝𝑝�
2

𝑖𝑖=1

+ �𝑅𝑅𝑗𝑗(𝑝𝑝)
2

𝑗𝑗=1

+ 𝑘𝑘 + 𝜎𝜎𝑣𝑣 (24)  

 
Considering the data from the first tensile quarter cycle from the cyclic test and if the later stages of hardening are 
considered, it can be assumed that χ1 has reached the stationary value of C1/γ1 and therefore the hardening is 
dominated by χ2. Consequently, equation (24) can be simplified to 
 

 𝜎𝜎 =
𝐶𝐶1
𝛾𝛾1

+
𝐶𝐶2
𝛾𝛾2
�1 − exp�−𝛾𝛾2𝜀𝜀𝑝𝑝�� + 𝑅𝑅 + 𝑘𝑘 + 𝜎𝜎𝑣𝑣 (25)  

 
Assuming k and σv as constant and differentiating equation (25) with respect to εp, rearranging and taking natural 
logs in both sides gives 
 

 ln�
𝜕𝜕𝜎𝜎
𝜕𝜕𝜀𝜀𝑝𝑝

−
𝜕𝜕𝑅𝑅
𝜕𝜕𝜀𝜀𝑝𝑝

� = −𝛾𝛾2𝜀𝜀𝑝𝑝 + ln (𝐶𝐶2) (26)  

 
The parameters γ2 and C2 may be obtained by the slope and the intersection, respectively, of the regression line 
through the data points in the ln(∂σ/∂εp - ∂R/∂εp) vs. εp  plot as illustrated in the following Figure 5. 
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Figure 5: Plot used in the approximation of the parameters C2 and γ2 of the kinematic hardening χ2 

 
Similarly, if the early stages of hardening are considered, both χ1 and χ2 are contributing to the kinematic hardening. 
Since C2 and γ2 are known, the contribution of χ2 into the hardening can be quantified. 
Therefore, equation (24) can be rewritten as 
 

 𝜎𝜎 =
𝐶𝐶1
𝛾𝛾1
�1 − exp�−𝛾𝛾1𝜀𝜀𝑝𝑝�� + 𝜒𝜒2 + 𝑅𝑅 + 𝑘𝑘 + 𝜎𝜎𝑣𝑣 (27)  

 
Assuming k and σv as constant and differentiating equation (27) with respect to εp, rearranging and taking natural 
logs in both sides gives 
 

 ln�
𝜕𝜕𝜎𝜎
𝜕𝜕𝜀𝜀𝑝𝑝

−
𝜕𝜕𝜒𝜒2
𝜕𝜕𝜀𝜀𝑝𝑝

−
𝜕𝜕𝑅𝑅
𝜕𝜕𝜀𝜀𝑝𝑝

� = −𝛾𝛾1𝜀𝜀𝑝𝑝 + ln (𝐶𝐶1) (28)  

 
The parameters γ1 and C1 may be obtained by the slope and the intersection, respectively, of the regression line 
through the data points in the ln(∂σ/∂εp - ∂χ2/∂εp - ∂R/∂εp) vs. εp  plot as illustrated below in Figure 6.  

 

 

Figure 6: Plot used in the approximation of the parameters C1 and γ1 of the kinematic hardening χ1 

 
As shown in equation (26) and (28), the expressions of ∂σ/∂εp and ∂R/∂εp have to be defined in order to obtain the 
data points used for the fit. 
 
As p = εp for the first quarter cycle of the first cycle, the expression of ∂R/∂εp can be obtained by differentiating 
equation (17) relative to εp 
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𝜕𝜕𝑅𝑅
𝜕𝜕𝜀𝜀𝑝𝑝

= 𝑅𝑅0 + 𝑄𝑄𝑏𝑏exp�−𝑏𝑏𝜀𝜀𝑝𝑝� (29)  

 
The definition of the expression of ∂σ/∂εp is not as straightforward as for ∂R/∂εp. A procedure for the definition of 
the expression of ∂σ/∂εp is given in [2]. Starting from the term dσ/dεp, multiplying by dt/dt and dεt/dεt, then 
rearranging results in 

 
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀𝑝𝑝

=
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀𝑡𝑡

1
𝜀𝜀�̇�𝑝
𝜀𝜀�̇�𝑡 (30)  

 
Since the tests are strain controlled, the value of the total strain rate 𝜀𝜀�̇�𝑡 is known. 
Defining the total strain εt as the sum of its elastic part εe and its plastic part εp, and using the Hook´s law, εe = σ/E 
result in 

 𝜀𝜀𝑡𝑡 =
𝜎𝜎
𝐸𝐸

+ 𝜀𝜀𝑝𝑝 (31)  

 
Rearranging equation (31) and differentiating it with respect to time gives 
 

 
𝑑𝑑𝜀𝜀𝑝𝑝
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝜀𝜀𝑡𝑡
𝑑𝑑𝑑𝑑

−
1
𝐸𝐸
𝑑𝑑𝜎𝜎
𝑑𝑑𝑑𝑑

 (32)  

 
Multiplying the final term in equation (32) by dεt/dεt and rearranging leads to 
 

 𝜀𝜀�̇�𝑝 = 𝜀𝜀�̇�𝑡 �1 −
1
𝐸𝐸
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀𝑡𝑡

� (33)  

 
An expression of dσ/dεt is required in equation (33) to define 𝜀𝜀�̇�𝑝 and also in equation (30) for the calculation of 
dσ/dεp. 
 
The Ramberg-Osgood equation can be used to describe the evolution of σ as a function of εt along the tensile 
portions of the stress-strain hysteresis loop. To describe the first tensile quarter cycle of the first cycle (section AB in 
Figure 4), the Ramberg-Osgood equation is expressed in the following form 
 

 𝜀𝜀𝑡𝑡 =
𝜎𝜎
𝐸𝐸

+
𝜎𝜎0
𝐸𝐸
�
𝜎𝜎
𝜎𝜎0
�
𝑛𝑛0

 (34)  

 
where σ0 and n0 are the parameters of the Ramberg-Osgood equation. 
 
Differentiating equation (34) with respect to εt gives 
 

 
𝑑𝑑𝜎𝜎
𝑑𝑑𝜀𝜀𝑡𝑡

=
𝐸𝐸

1 + 𝑛𝑛0 �
𝜎𝜎
𝜎𝜎0
�
𝑛𝑛0−1

 (35)  

 
Rearranging equation (35) and taking logs of both sides gives 
 

 ln(𝐸𝐸𝜀𝜀𝑡𝑡 − 𝜎𝜎) = 𝑛𝑛0ln(𝜎𝜎) − (𝑛𝑛0 − 1)ln(𝜎𝜎0) (36)  

 
The parameters n0 and σ0 may be obtained by the slope and the intersection, respectively, of the regression line 
through the data points in the ln(Eεt -σ ) vs. ln(σ ) plot as show in Figure 7. 
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Figure 7: Plot used in the calculation of the constants n0 and σ0 of the Ramberg-Osgood equation 
 
 
4.4 Viscous parameters 

The rate dependency of the stress and therefore the creep effect is accounted for within the model in the form of the 
Norton creep law. Considering uniaxial stress relaxation tests, where p = εp and 𝜈𝜈 = 𝑠𝑠𝑠𝑠𝑛𝑛(𝜎𝜎 − 𝜒𝜒) = 1, and 
substituting equation (14) into equation (15), the viscous stress can be defined as  
 

 𝑍𝑍𝜀𝜀�̇�𝑝1/𝑛𝑛 = 𝜎𝜎𝑣𝑣 = 𝜎𝜎 − 𝜒𝜒 − 𝑅𝑅 − 𝑘𝑘 (37)  

 
At the beginning of the stress relaxation test, 𝜀𝜀𝑝𝑝0 = 0 and 𝜒𝜒𝑖𝑖0 = 0. Therefore, the kinematic hardening χi is defined 
using equation (23). 
As the parameters for the isotropic hardening and the kinematic hardening are known, the contributions of χ and R 
can be quantified. A first estimation of the true elastic limit k is obtained by observing that σv = 0 for t → ∞. As 
shown in Figure 8, the value of 𝜎𝜎 − 𝜒𝜒 − 𝑅𝑅 after 600 s of stress relaxation can then be regarded as an upper bound for 
k (the lower bound obviously being kmin = 0).    
 

 

 

Figure 8: Plot used for a first estimation of the true elastic limit k 

 
Considering a stress relaxation test, in which 𝜀𝜀̇ = 0, so at constant temperature (𝜀𝜀�̇�𝑡ℎ = 0), the plastic strain increment  
𝜀𝜀�̇�𝑝 is defined from equation (1) as 
 

 𝜀𝜀̇ = 0 = 𝜀𝜀�̇�𝑒 + 𝜀𝜀�̇�𝑡ℎ + 𝜀𝜀�̇�𝑝 =
�̇�𝜎
𝐸𝐸

+ 𝜀𝜀�̇�𝑝 ⇒ 𝜀𝜀�̇�𝑝 = −
�̇�𝜎
𝐸𝐸

 (38)  
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Approximating the stress increment �̇�𝜎 using centred finite difference, instantaneous values for the plastic strain rate 
can be obtained using equation (38). 
As the value of k is determined, and as σ, χ, and R are known for all the data points obtained from the stress 
relaxation test, the viscous stress σv can be calculated using equation (37). 
Rearranging equation (37) and taking logs of both sides gives 
  

 ln(𝜎𝜎𝑣𝑣) =
1
𝑛𝑛

ln�𝜀𝜀�̇�𝑝� + ln (𝑍𝑍) (39)  

 
The parameters n and Z can be determined by plotting the viscous stress σv against 𝜀𝜀�̇�𝑝 in a log-log plot as shown in 
Figure 9. 
 

 

Figure 9: Plot used in the calculation of the constants n and Z of the Norton creep law 

 

5 Accuracy of the identified model´s parameters 

5.1 Optimization procedure 

The model parameters are identified using a step by step procedure. The initial parameters estimated were used as 
inputs in the optimization procedure. The objective function as defined by equation (40) was used to quantify the 
difference between the experimental stress values and the corresponding calculated stress values with a given set of 
parameters. The goal is to determine a set of parameters that minimizes the objective function 
 

 𝐹𝐹(𝑥𝑥𝑛𝑛) =
1
𝑌𝑌
��𝜎𝜎𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥𝑛𝑛) − 𝜎𝜎𝑟𝑟

𝑒𝑒𝑒𝑒𝑝𝑝�2
𝑌𝑌

𝑟𝑟=1

 (40)  

 
where σnum and σexp denote numerical analysis results and experimental measurements; xn represents the set of 
parameters and Y is the number of data points in the experiment. 
 
The optimization of the kinematic hardening coefficients using equation (24) for the calculation of σnum and the data 
from the first quarter cycle of the first cycle of the fatigue test as σexp resulted in a poor prediction of the hysteresis 
loops with rapid hardening [8]. In the present work, equation (22) is used for the calculation of σnum and the 
experimental data from both the first compression half cycle (section BC in Figure 4) and the first tensile half cycle 
(section CD in Figure 4) of the first cycle from the low cycle fatigue test are considered for the optimization of the 
kinematic hardening coefficients. 
 
The gradient-based Levenberg-Marquardt iteration algorithm has been used to determine the optimum set of material 
parameters by solving the nonlinear least squares fit problem given by equation (40). For this purpose, the 
Optimization Toolbox of MATLAB, and more specifically the “lsqcurvefit” command was applied. 
 
 

0

0.2

0.4

0.6

0.8

1

1.2

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

ln
(s

v)
, N

or
m

al
iz

ed
 

ln(dep/dt), Normalized 



6TH EUCASS, KRAKOW, POLAND, 29 JUNE – 3 JULY 2015 
     

 13 

5.2 Implementation of Chaboche model in MATLAB 

A first-order non-linear system of differential equations can be obtained from equations (2) to (13) with considering 
the variables of σ, χ1, χ2, R1, R2, εp, and p. The solution of the Chaboche model is obtained by using the optimized 
parameters and by solving the above mentioned system of differential equations using the automatic adaptive 
variable step Runge-Kutta-Fehlberg algorithm, one of the most popular methods of solving differential equations 
using numerical techniques. 
The ODE45 function within the MATLAB mathematics toolbox, in which the variable step length Runge-Kutta-
Fehlberg algorithm is used, has been used for solving the first-order system of differential equations from the initial 
values problem.   
 
5.3 Comparison of the model results to experimental data 

The solution of the numerical model using the optimized material parameters is compared with the experimental data 
from uniaxial strain-controlled low cycle fatigue test and dwell test with 600 s hold periods in tension and 
compression at 900K to assess the accuracy of the determined model´s coefficients. 

5.3.1 Hysteresis loops 

The numerical analysis of a cyclic test that would be performed in strain-controlled mode with a fixed total strain 
range of 2 %, a strain ratio of -1, and at a strain rate of 0.2 %/s for the cycle 1, 5, and 40 is compared to the 
corresponding hysteresis loops from the uniaxial low cycle fatigue test performed at the same conditions in Figure 
10.  As for the uniaxial low cycle fatigue test, a trapezoidal wave form was used as load path for simulating the 
uniaxial cyclic test. Globally, the shapes of the numerical and experimental stress-strain curves coincide well. A 
good correlation between the simulation and the experimental data was obtained over the whole strain range and for 
all cycles. 
 

 

Figure 10: Comparison of the model prediction of the 1st, 5th, and 40th cycle to the corresponding hysteresis loops 
from the strain-controlled LCF test performed at 900 K. 

5.3.2 Evolution of the stress amplitude with the cycle number 

Figure 11 compares the evolution of the stress range with the accumulated plastic strain from the uniaxial low cycle 
fatigue test to the cyclic softening of the material predicted by the model considering the same conditions. The 
numerical results show a good agreement with the measurement since the two representative curves almost overlap. 
The two stages of the cyclic softening are well predicted by the model. 
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40 
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Figure 11: Comparison of the model prediction of the cyclic softening of the material to the evolution of the stress 
range during the considered strain-controlled LCF test performed at 900 K. 

 

5.3.3 Dwell test with 600 s hold periods in tension and compression 

In addition to the cyclic tests and the stress relaxation tests, uniaxial cyclic dwell tests with identical hold periods in 
tension and compression have been carried out at high temperatures to provide experimental data for the assessment 
of the accuracy of all defined parameter values. 
The uniaxial dwell tests have been performed in strain-controlled mode for a total strain range of 2 %, a strain ratio 
of -1, and a strain rate of 0.2 %/s. For each cycle, the strain was hold at extreme values in tension and compression 
for periods of 600 s. 
In Figure 12, the stress evolution with time predicted by the numerical model is compared to the measurement of the 
stress during the dwell test performed at 900 K. The numerical model slightly overestimates the stress range before 
the hold periods. However, the reduction of the stress range with increasing time is well simulated by the model as 
the difference between the predicted stress range and the measured one is constant for all the cycles. As far as creep 
is concerned, the model predicts a bit faster relaxation of the stress compared to the experiment. Globally, the 
correlation between the model prediction and the measured stress evolution is acceptable.  
 

 

Figure 12: Comparison of the stress evolution with time predicted by the model for the simulation of a dwell test 
with 600 s hold periods in tension and compression to the experience at 900 K 



6TH EUCASS, KRAKOW, POLAND, 29 JUNE – 3 JULY 2015 
     

 15 

6 Conclusion 

Driven by the intention to increase the fatigue life of rocket engines while reducing its cost, a cost effective copper 
based alloy has been investigated. The unified Chaboche model was selected for the simulation of the mechanical 
behaviour of this material. 
Strain-controlled uniaxial low cycle fatigue tests and stress-relaxation tests have been used for the determination of 
the model´s parameters. The considered step by step procedure to estimate initial values of the model´s parameters 
has been presented. The used equations and considered experimental data have been shown in detail.  
The above mentioned estimated initial parameters were used as input values for the non-linear least squares fit 
procedure based on the Levenberg-Marquardt iteration algorithm. The constitutive equations of the Chaboche model 
have been implemented in MATLAB to assess the accuracy of the fitted parameters. The predictions of the model 
using the optimized parameters show a good agreement with the experimental data for the considered uniaxial tests. 
Therefore, the values of the model´s parameters can be assumed as accurate. 
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