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Abstract
A cross influence between the blade pitch angle and the servo blade flapping angle is studied. A full

mechanical equations of a rigid body motion was taken as a basis for a description of the flapping motion
process. It was found that the dimensionless variables in the equations can be divided into groups by their
decimal orders. The equations were truncated up to the second order of approximation error.

1. Introduction

An autopilot was designed for the small electrical helicopter Walkera 450. It has the Hiller hub, the main rotor diameter
is 700 mm, the weight is 830 g, and the useful load is 300 g. The helicopter is controlled by four signals transmitted
from the control panel. The first two controls determine angles of the swash plate, the other two controls determine
collective pitches of the main and tail rotors. The main rotor frequency depends also on the third control and takes
values between 27 and 29 Hz.

Figure 1: Electrical helicopter Walkera 450.

There are two types of observation: the TV tracking system and the onboard sensor.

1.1 TV observation

The TV observation is based on two standard Web cameras connected to computer through the USB ports. The
cameras can be installed at arbitrary places at the distance of 2-4 meters from the helicopter. No calibration or position
adjustment is needed. 4 small diodes were attached to the helicopter, and the distances between them were measured
and known by the computer. This information is enough for calculation of the full helicopter state vector by one image
in a camera coordinate system. The spots from 4 diodes on the screen are recognized, their centers and shapes are
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calculated. It is not a complicated geometrical task to find three dimensional coordinates of a tetrahedron tops by their
two dimensional projections on the screen.

The navigation system consists of two parts: primary adjustment and tracking. Primary adjustment means cal-
culation of the mutual positions of cameras including focus coordinates and Euler angles. The input is only one image
of the diodes tetrahedron in each camera.

The helicopter state vector was converted to the earth coordinate system. The origin of this system is a point
in the middle between the two camera focuses. The focuses lies in the OYZ plane while the axis OY is vertical. The
vertical direction is recognized in the image by an additional vertical line with two diodes installed in the room. The
axis OX is directed to the half space of the helicopter.

Figure 2: TV observation

Tracking is made by the Extended Kalman-Bucy filter. Camera position parameters are estimated with errors
that must be corrected during observation. These parameters are included in the full state vector of the system which
contains 20 variables. Coefficients of the linearized plant equations are calculated near the balanced realization with
zero linear and angular velocities.

2. Sensor noises

An onboard sensor contains three gyroscopes and three acceleration gauges.
The gyroscopes measure angular velocities of the helicopter. The range between -3 and +3 rad/s is covered by a

grid with 1024 points. The sample rate is around 273.5 samples per second. It corresponds to 10 samples per revolution
of the main rotor.
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Figure 3: Angular velocities measured by the onboard sensor and by TV cameras
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The data from gyroscopes show big and fast oscillations of fuselage forced by the rotation of the main rotor.
Angles variations are small but the angular velocities of oscillations appear to be 3–4 times greater than their smoothed
values. The Pitch and Roll velocities of the helicopter are shown in Fig. 3. The sensor data are blue, Kalman filter
estimates by camera observations are red.

Typical spectra of the onboard sensor data from the Roll and Pitch gyroscopes are shown in Fig. 4. The spectra
contain small values for the frequency less than 2 Hz, that express angular motion of the helicopter. The highest peak
corresponds to the frequency of the main rotor rotation. The second, third and fourth harmonics are clearly seen. The
last harmonic near the Nyquist frequency of 137 Hz corresponds to rotation of the tail rotor.
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Figure 4: Frequency response of the body oscillation

A special ”bells” technique5, 6 is supplied for precise estimation of frequencies and phases of the locally harmonic
signal. With this technique the main rotor revolution time is estimated up to 1%. Estimates of frequency of the main
rotor rotation on the time interval of 37 s is shown on Fig. 5. The gyroscope measurements in the roll and pitch
channels were processed independently. It follows from Fig. 5 that the results coincide and accuracy is high. Even
fluctuations of the main rotor frequency were the same. The reasons of the main rotor frequency fluctuations include
control signals and an onboard battery charge trend.
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Figure 5: Estimates of frequency and phase of the main rotor by two gyroscopes

A detailed study of the oscillation signal have shown that it is a sum of pure harmonics with frequencies multiple
to the main rotor rotation frequency F . Variations of the frequency F are shown in Fig. 5. All the harmonics were ex-
tracted from the signal by corresponding filtering. The biggest amplitude of the harmonics is achieved on the frequency
F . The phases of the main harmonic were estimated on the sequential intervals of 256 samples. The roll and pitch
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signals were processed separately. The phase difference of the main harmonic estimated by roll measurement and by
pitch measurement is shown in the second subplot of Fig. 5. It is seen that the phase difference is nearly the same for
all frequencies of the main rotor. A deviation from the central value of 155◦ is less than 5◦. Phases are very sensitive to
the frequency errors. Therefore, small deviations of phases prove a high accuracy of the main rotor frequency estimate.
The constant delay of 155◦ can be derived only from mechanics and aerodynamics of the main rotor.

3. Main rotor

A main rotor with the Hiller hub includes two blades and two servo blades. Position of the swash plate determines
the pitch angle of the servo blade rod while the flapping angle of the servo blade rod determines the pitch angle of
blades. The contribution of our investigation consists of a precise estimation of the approximation error for all forces
and torques. A lightweight helicopter has specific values of normalized dimensionless parameters, many of them are
close to 0.1. Any polynomial expression of these parameters is a sum terms with corresponding decimal orders. All
forces and torques of the main rotor are approximated up to the second order of the approximation error.

Fig. 1. The main rotor hub of the Hiller type

The Hiller hub is not equipped with vertical hinges. Therefore, the motion of blades and servo blades is flapping
only in the planes that contain the main rotor shaft. The flapping angle of the servo blade rod is connected to the pitch
angle of the blade rod. Therefore, the flapping motion of the servo blades determines the flapping motion of blades.
But the inverse influence is not commonly studied because it is negligible for big machines. The results of this paper
shows that this is not the case for small helicopters.

The basic equations of the main rotor theory can be found in.1, 2 This theory was successfully implemented in
the helicopter autopilot system by TV observations.3, 4

4. Full model of the flapping motion

Full dynamical models and their approximations are derived in this section for flapping motion of the servo blade rod
and of the blade rod. The models are similar, therefore we consider a general rod motion instead of particular a blade
or a servo blade. The motion is determined by the outer torques and the Coriolis forces and torques.

Consider a rod which is connected to the rotor shaft and rotates at the constant angular velocity ω0. The helicopter
rotates in the earth system of coordinates with the angular velocity Ω(t). The rod is attached to the shaft in a fixed
point and it can move in the plane containing the shaft. The rod can also rotate with respect to its axis.

Assume an inertial system of coordinates is fixed, and the vector components in this system will be denoted by
inert, that is, rinert = col(rinertx , rinerty , rinertz ). The following four rotating systems of coordinates have the origins at
the intersection of the rod and the shaft.

A helicopter system of coordinates rh rotates with the angular velocity Ω(t) with respect to the inertial system.
A shaft system of coordinates rs rotates around the rotor shaft at the constant angular velocity ω0. The rotation angle
is denoted by ξ(t) = ξ0 + ω0t. A rod pivot system of coordinates rb makes flapping motions with respect to the shaft
system of coordinates. The flapping angle in the plane OYZ is denoted by β(t). A rod system of coordinates r0 rotates
around the rod axis by the angle of attack ϕ(t).

Rotation transformations are defined by the following matrices:

rh = V rs, rs =Wrb, rb = Xr0,
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where the matrices take the form

X=

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 , W=

1 0 0
0 cosβ sinβ
0 − sinβ cosβ

 V=

cos ξ 0 − sin ξ
0 1 0

sin ξ 0 cos ξ

 .

The rod is influenced by the following forces and torques:

• The torque M of outer forces.

• The value of the stiffness torque mω
z (t) in the plane OYZ of the shaft coordinate system. This torque provides a

uniform rotation of the shaft.

• The value of the stiffness torque mb
z(t) in the plane OXY of the rod system of coordinates. It provides the

predetermined pitch angle of the rod. The torque mb
z(t) is applied for servo blades only.

The vectors of the stiffness torques are defined as follows. The torque M inert
ω (t) stabilizes the rotation in the

inertial system of coordinates, while the torque Mϕ(t) of implementation of the swash plate commands is defined in
the rod system of coordinates:

M inert
ω,inert(t) =

 0
mω
y (t)
0

 , M0
ϕ(t) =

 0
0

mb
z(t)

 .

4.1 The general equation of the rod motion

The angular velocity vector δ is defined in the inertial system of coordinates. Its representation in the rod system of
coordinates is

δ0 = −ϕ̇e3 − β̇XT e1 − ω0X
TWT e2 +XTWTV TΩ,

where and further (e1, e2, e3) denotes the standard basis vectors in R3.
The standard mechanical equation of the rotation of a rigid body in the space gives

I0δ̇0 = −δ0 × (I0δ0) +M0
ω +M0

ϕ +M0,

where
M0
ω = mb

ze3, M0
ϕ = mω

yX
TWT e2,

and the torque Mϕ is not applied to blades. Denote the rod matrix of inertia by

I0 =

 ix 0 −ixz
0 ix + iz 0

−ixz 0 iz

 .

A particular feature of the rod is a symmetric mass distribution with respect to the OY axis. The matrix I can be
described by the main value of ix and the coefficients

κxz =
ixz
ix
, κz =

iz
ix
.

Normal values for these coefficients are κxz,g ≈ −0.009, κz,g ≈ 0.0016 for servo blades, and κxz,g ≈ 0.0044,
κz,g ≈ 0.00085 for blades.

Assume the helicopter angular velocity Ω is given Then the system of three equations for the servo blades
contains three unknowns: the flapping angle β and the stiffness torquesmb

z andmω
y . After integration of this differential

equation, the stiffness torque mb
z is added to the outer torques applied to the blades.

The blade equation system contains also three unknowns. They are: the flapping angle β, the pitch angle ϕ and
the stiffness torque mω

y . It is required to calculate the flapping motion angle of β(t) for blades and the flapping motion
angle of βg(t) for sevo blades.
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4.2 Equation for the flapping motion

The stiffness torques of the rigid body mb
z and mω

y are eliminated from the three equations of flapping motion. This
can be done from the kinematic relation

eT1X[mb
ze3 +mω

yX
TWT e2] = 0.

Long algebraic transformations lead to the following formula:

1

ix
eT1X[I0δ̇0 + δ0 × (I0δ0)] = −β̈ − ω2

0 cosβ sinβ + 2ω0Ω
b
z cosβ + Ω̇bx − ΩbyΩ

b
z

+κxz

{
cosϕ

[
ϕ̈+ 2ω0Ω

b
x cosβ − Ω̇bz − ΩbxΩ

b
y

]
+ sinϕ

[
(ω0 cosβ − Ωby)

2 − (ϕ̇+ ω0 sinβ − Ωbz)
2

]}
+κz sinϕ

{
cosϕ

[
− 2ϕ̇β̇ + 2ϕ̇Ωbx + 2ω0Ω

b
x sinβ + Ω̇by − ΩbxΩ

b
z

]
+sinϕ

[
− β̈ + ω2

0 sinβ cosβ + 2ω0ϕ̇ cosβ − 2ϕ̇Ωby − 2ω0Ω
b
y sinβ + Ω̇bx +ΩbyΩ

b
z

]}
.

This expression must be equal to the outer torque divided by the inertia matrix:

1

ix
eT1X[I0δ̇0 + δ0 × (I0δ0)] =

1

ix
M b
x =

1

ix
Ms
x.

The torque mb
z is considered as an outer torque for the blades. The pitch angle ϕ remains unknown. To find it,

an additional equation is to be derived from the general rotation equation by left multiplication by eT3WX:

eT3WX[I0δ̇0 + δ0 × (I0δ0)] = eT3WXM0 =Ms
z .

Algebraic transformations that lead to the equation

1

ix
eT3WX[I0δ̇0 + δ0 × (I0δ0)] = E0 + κxzExz + κzEz,

where

E0 = sinβ

[
− Ω̇by − 2ω0β̇ sinβ +Ω0

z(2β̇ − Ωbx)

]
,

Exz = ϕ̈ sinϕ sinβ + β̈ cosβ cosϕ− Ω̇0
x cosβ − Ω̇0

z sinϕ sinβ + 2ω0ϕ̇ cosϕ sin
2 β

+4ω0β̇ sinϕ cosβ sinβ + (ϕ̇2−β̇2+ω2
0) cosϕ sinβ +Ω0

z[−2ϕ̇ cosϕ sinβ − 2β̇ sinϕ cosβ − 2ω0 cosϕ

+Ω0
y cosβ +Ω0

z cosϕ sinβ] + Ω0
x[2β̇ − Ωbx] sinβ,

Ez = −ϕ̈ cosβ + β̈ cosϕ sinϕ sinβ − Ω̇0
y cosϕ sinβ + Ω̇0

z cosβ + 2ϕ̇β̇ cos2 ϕ sinβ

−2ω0ϕ̇ cosϕ sinϕ cosβ sinβ − 2ω0β̇ sin
2 ϕ cos2 β − (ω2

0 − β̇2) cosϕ sinϕ cosβ

+Ω0
x[−2ϕ̇ cosϕ sinβ − 2β̇ sinϕ cosβ − 2ω0 cosϕ+Ω0

y cosβ +Ω0
z cosϕ sinβ].

5. Cross influence of blade and servo blade subsystems

The angles of the swash plate, of the servo blade and blade pitches and of the servo blade flapping motions are connected
by kinematic conditions. In the sequence, all variable related to the servo blades are provided with the superscript g to
distinguish them from the blades.

A direction will be defined with respect to some fix axis which is commonly directed to the air flow. The angle
between a direction of a rod and this axis is called an azimuth. It is calculated in the plane OXZ of the speed system of
coordinate and in the negative direction, from OX to OZ.

The cyclic pitch of the swash plate is determined by the coefficients Θ1 and Θ2 that together form the complex
number Θ1 + iΘ2. The angle Θ1 corresponds to the zeros azimuth and the angle Θ2 corresponds to −π/2. The swash
plate position at the azimuth ψ is

θ(ψ) = Im(e−iψΘ),
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The pitch angle of the servo blade at the azimuth ψ is defined by

ϕg(ψ) = Duθ(ψ + π/2) = −DuRe(e
−iψΘ),

where Du = 1.6 is the transfer coefficients.
Set one of the blades to be the leading blade, and its azimuth will be denoted by ψ. The flapping angle and the

pitch angle of this blade are denoted byβ(ψ) and ϕ(ψ), respectively. This leading blade indicates a servo blade that
goes ahead by 90◦. Denote its flapping angle by βg(ψ+π/2).

The kinematic relation between the angles is determined by the hub construction and can be described by the
equation

ϕ(ψ) = ϕ0 +Dgβg(ψ+π/2) +DΘθ(ψ + π/2)

= ϕ0 +Dgβg(ψ+π/2)−DΘ Re(e−iψΘ),

where ϕ0 is the collective pitch, Dg = 0.8 and DΘ = 0.5 are the fixed transfer coefficients.
The kinematic condition on the blade angle of pitch ϕ and the servo blade flapping angle βg forces the torques

on a servo blade and on a blade

M b
hub(ψ) =

 0
0

mb,g(ψ)

 , Ms
hub,g(ψ + π/2) =

−mb,g(ψ)
0
0

 .

The positive value of mb,g(ψ) means that the torque acts to the decreasing of the blade pitch ϕ(ψ) and the torque on
the servo blade tries to increase the flapping angle βg(ψ + π/2).

6. Principle parts in equations

Simplification of the general motion equations can be achieved by expansion of the nonlinear functions in the power
series with respect of all variables and by taking the main polynomial parts. It was recognized that all dimensionless
variables can be divided in a number of groups by their decimal values. The group of the order n contains all variables
that have maximal values not greater than α10−n with the coefficient α ≤ 2, and not belong to the group n + 1. If a
variable f has an order n then the variable |f |1/n has an order 1.

The next list contains variable which were decided to have the order 1. All angles are calculated in radians, all
angular velocities are divided by ω0.

ε = col(β, βg, ϕ, ϕg, Ω̄x, Ω̄z, |Ω̄y|1/2, |Ω̄′
xz|1/3, |Ω̄′

y|1/4,

κ1/2xz , κ
1/3
z , κ1/2xz,g, κ

1/3
z,g , κi),

where κi = ix,g/ix ≈ 0.12.
For any function f(t) define the normalized derivative as f ′(t) = ω−1

0 ḟ(t).
Extract the terms in the general flapping motion equations which have the minimal order n and the next order

n+ 1. The rest is residual denoted by O(|ε|n+2). After some algebra the general equations become much simpler:

−β′′ − β + 2Ω̄sz =
1

ixω2
0

M b
x +O(|ε|3), −β′′

g − βg + 2Ω̄sz =
1

ix,gω2
0

M b
x,g +O(|ε|3).

The equation for the angle of blade pitch is

β[−2β′β + 2β′Ω̄bz − Ω̄bxΩ̄
b
z] + κz[−ϕ′′ − ϕ− 2Ω̄bx] =

1

ixω2
0

(Ms
z + κxzM

b
x) +O(|ε|5).

The stiffness torque mω must be eliminated from the equations. This lead to the system of two differential
equations and one algebraic equation with respect to the flapping angles β, βg and the pitch of attack ϕ:

−β′′ = β − 2Ω̄sz +
1

ixω2
0

(Ms
x,air +Ms

x,e) +O(|ε|3),

ϕ(ψ) = ϕ0 +Dgβg(ψ+π/2)−DΘ Re(e−iψΘ),

−β′′
g (ψ + π/2)− βg(ψ + π/2) = 2Ω̄sx(ψ) + κ−1

i β(ψ)[2β′(ψ)β(ψ)− 2β′(ψ)Ω̄sz(ψ) + Ω̄sx(ψ)Ω̄
s
z(ψ)]

+
κxz
κi

(−β′′(ψ)− β(ψ) + 2Ω̄sz(ψ)) +
Ms
x,air,g(ψ + π/2)

ix,gω2
0

+O(|ε|5).
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7. Principle parts of the main rotor forces and torques

Similar approximations can be done in the standard theory of the main rotor. The equations can be truncated with
remaining the principle part and the next order part.

Introduce the following notation.
ρ - density of air; b - blade chord, cαy - section lift coefficient, cx - blade drag coefficient, ω - rotational frequency

of main rotor, R - blade length, B - tip loss factor, λ - rotor induced inflow ratio, Θ1 - longitudinal cyclic pitch,
Θ2 - lateral cyclic pitch, ϕ0 - blade collective pitch, S - rotor side force, Ω = (Ωx,Ωy,Ωz) - angular velocity of
helicopter, V = (Vx, Vy, Vz) - linear velocity of main rotor hub, (a1, b1) - coefficients of flapping motion of blade,
(a1g, b1g) - coefficients of flapping motion of servoblade, ke - coefficient of elastic moment of blade, r1,g, r2,g -
minimal and maximal radii of servoblade, DΘ - transfer coefficient from swash plate angle to blade section angle of
attack, Du - transfer coefficient from swash plate angle to servoblade section angle of attack, Dg - transfer coefficient
from servoblade flapping angle to blade section angle of attack, γ∗ - blade mass characteristic, γ∗g - servoblade mass
characteristic.

The helicopter dynamics equations have a specific form that is isomorphic to arithmetic of the complex numbers.
Therefore, introduce the corresponding complex values: a = a1 + ib1 - complex coefficient of flapping motion of
blade, ag = a1,g + ib1,g - complex coefficient of flapping motion of servoblade, Θ = Θ1 + iΘ2 - complex coefficient
of the swash plate position, DΘ = Dgag + iDΘΘ = DaΘ + iDbΘ - complex coefficient from the blade position to the
section angle of attack, Vxz = Vx + iVz . The coordinate system is shown in Fig. 1.

Dimensionless values are denoted by bar. Linear velocity: V̄ = V/(ωR). Angular velocity: Ω̄ = Ω/ω. Length:
r̄ = r/R. Additional notation for the following small values:

B2,g =
r22,g − r21,g

2R2
, B2,g =

r42,g − r41,g
4R4

,

Define the coefficients

γ∗ =
ρbcαyR

4

2Ih
, kγ =

4ke
ρbcαyω

2R4B4
,

DΘ = Dgag + iDΘΘ = DaΘ + iDbΘ.

The list ε of the first order variables from the previous section is supplemented by

∆ε = (λ,Θ, c1/2x , c1/2xg , B
−1/2
2,g , B

−1/2
4,g , ϕ0, |V̄xz|).

1. Aerodynamic force of the main rotor blades normal to the disk plane:

T = ρbcαyω
2R3

{
B2

2
λ(1− Ω̄y) + ϕ0

(
B3

3
(1− Ω̄y)

2 +
B

2
|V̄xz|2

)
+
B2

4
Re

[
(V̄xz)

∗
(
2DΘ(1− Ω̄y)− Ω̄xz − aΩ̄y)

)]
+O(|ε|3)

}
.

2. Pitching and rolling moments of the main rotor blades:

MT =
1

2
keia.

3. Torque of the main rotor blades:

Mk = ρbω2R4cαy

{
mk,2 +mk,3 +O(|ε|4)

}
,

where mk,2 and mk,3 are of the second and the third orders

mk,2 =
1

4

cx
cαy

− B3

3
ϕ0λ+

B4

8
Re[DΘ(a+ Ω̄xz)

∗]− B2

2
λ2 − B4

8
|a+Ω̄xz|2,

mk,3 = −Ω̄y

[
1

2

cx
cαy

− B3

3
ϕ0λ+

B4

8
Re(DΘ(a+ Ω̄xz)

∗)

]
+Re(V̄xz)

∗
[
B2

4
ϕ0Ω̄− B2

4
λDΘ − B2

2
λa

]
.
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4. Coefficients of the flapping motion of blades:

a =
1

∆

[
DΘ − Ω̄xz +

8

B4γ∗
iΩ̄xz +

(
8

3B
ϕ0 +

2

B2
λ

)
V̄xz + (Ω̄xz − 2DΘ)Ω̄y

]
+O(|ε|3),

where

∆ = (1 + kγi)−
(
1 +

8

B4γ∗
i

)
Ω̄y.

5. Coefficients of the flapping motion of servoblades:

ag = −Ω̄xz + iDuΘ+
2

γ∗gB4,g
iΩ̄xz +

−Ω̄y

[
4γ−2

∗g B
−1
4,gΩ̄xz+(2γ−1

∗g +B4,gi)DuΘ

]
B4,g − Ω̄y(B4,g + 2γ−1

∗g i)

+
B2,g(λV̄xz+O(|ε|3))

B4,g − Ω̄y(B4,g + 2γ−1
∗g i)

.

6. Aerodynamic force of the servo blades normal to the disk plane:

Tg = ρbgc
α
ygω

2R3B2,g

{
λ(1− Ω̄y)−Du Im((V̄xz)

∗Θ)− 1

2
Re((V̄xz)

∗Ω̄xz) +O(|ε|3)
}
.

7. Torque of the servoblades:

Mk,g = ρbgc
α
ygω

2R4

{
mk,2,g +mk,3,g +O(|ε|4)

}
,

where

mk,2,g = B4,g
cx,g
cαyg

−B2,gλ
2 − 1

2
B4,g|ag + Ω̄xz|2 +

1

2
B4,gDu Im((Θ)∗(ag + Ω̄xz)),

mk,3,g = Ω̄y

(
− 2B4,g

cx,g
cαyg

+
1

2
B4,gDu Im(Θ(ag + Ω̄xz)

∗)

)
−B2,gλRe

[
(Ω̄xz)

∗
(
ag +

1

2
iDuΘ

)]
.

8. Longitudinal and lateral forces of the main rotor blades:

B = BT + BQ = ρbcαyω
2R3

{
b2 + b3 +O(|ε|4)

}
,

where b2 and b3 are the second order and the third order terms,

b2 =

(
B3

3
ϕ0 +

3B2

4
λ

)
a− B2

4
λDΘ +

(
B3

6
ϕ0 +

B2

2
λ

)
Ω̄xz,

b3 =
1

2
V̄xz

cx
cαy

− B

2
V̄xzλϕ0 − Ω̄y

(
B2

4
λa+

B3

3
ϕ0a+

B3

6
ϕ0(a− Ω̄xz) +

B2

4
λDΘ

)
+
B2

8
V̄xz

(
|a|2 + i Im(a(2DΘ − 3Ω̄xz)

∗) + (DΘ)
∗a+Re((DΘ)

∗Ω̄xz)

)
+
B2

8
(V̄xz)

∗(a+DΘ)(a+
1

2
Ω̄xz).

9. Longitudinal and lateral forces of the servoblades:

Bg = ρbgc
α
ygω

2R3B2,g

{
bg,2 + bg,3 +O(|ε|4)

}
,

where

bg,2 = λ

(
3

2
ag + Ω̄xz −

1

2
iDuΘ

)
,

bg,3 =
cx,g
cαyg

V̄xz +
1

2
λΩy(−ag + iDuΘ) +

1

4
V̄xz

[
|ag|2 − 2iRe

((
DuΘ+

1

2
iΩ̄xz

)
(ag)

∗
)

+2i Im(Ω̄xz(āg)
∗) +Du Im((Θ)∗Ω̄xz)− iDu(Θ)∗ag

]
+
1

4
(V̄xz)

∗
[
1

2
iDu(ΘΩ̄xz) + i

(
DuΘ+

1

2
iΩ̄xz

)
ag + ag(ag + Ω̄xz)

]
.
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8. Conclusion

The full set of nonlinear equations were presented for the flapping motion of blades and servo blades in the Hiller hub.
The equation were simplified by extraction of the main part with respect to dimensionless parameters taking values
around 0.1. It was shown that the stiffness torque between flapping motion of the servo blades and the blade pitch of
attack is not negligible. A regulator in the autopilot system was designed on the basis of the derived equations.
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