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Abstract 

This paper presents the simulation results for Space Manoeuvre Vehicles (SMV) skip entry trajectory 

optimization problem for specified mission. The focus is to investigate methods which are 

computational efficient and easy to implement. Considering the global optimality and high-accuracy, a 

two-step optimization approach, the Evolutionary Collocation based on heuristic algorithm and 

collocation method is presented and discussed. Implementation uses the physical characteristics of the 

NASA space shuttle in the simulation. 

The optimal-control problem is converted into a nonlinear programming problem (NLP) by Legendre-

Gauss-Lobatto collocation method. Sequential quadratic programming (SQP) converges faster and the 

solution accuracy is high when solving NLP, but it is sensitive to initial values. Two heuristic 

algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are adopted for the 

descent and exit phases to refine the grids and provide near optimum initial values to circumvent the 

limitations brought by the classic collocation techniques. The descent and exit are separated in the 

algorithm to let the user change the parameters at the lowest point. Since the heuristic algorithm does 

not guarantee the smoothness of generated curves, the control histories (angle of attack, bank angle 

and thrust) have to be processed to make them more realistic.  

Simulation is conducted and the result is compared between two heuristic methods, and the 

Evolutionary collocation gives a truthful re-entry trajectory satisfying the path constraints and is 

computation efficient. 

1. Introduction 

Over the past few decades, the importance of space assets has considerably increased for applications ranging from 

warfare control to civilian positioning. One of the current objectives is the expansion of Space Manoeuvre Vehicles 

(SMV): unscrewed, reusable payload carriers with significant manoeuvring capabilities for a dynamic mission profile 

[1]. These vehicles are expected to achieve a transatmospheric, aeroassisted maneuver such as skip entry. Reference 

[2] introduced one kind of vehicle, TAVs, which is designed to complete a skip entry maneuver to lower altitude and 

fulfill the mission of imaging on ground target. 

One of the many issues encountered in the development of such vehicles is to predict the dynamics of the aircraft 

during its re-entry into the Earth’s atmosphere and optimize its trajectory accordingly.  

Several methods [3-7] have been proposed to optimize the trajectory of a spacecraft entering the atmosphere however 

most of them relate the optimization to a landing scenario, aiming to improve the control over the range and the 

touchdown accuracy.  

The proposed investigation in this paper will aim to focus on the atmospheric skip, targeting the entry into the 

atmosphere down to a predetermined point with fixed altitude and the required controls involved in returning to low 

orbit. Some papers have studied the skip reentry of deep-space spacecraft with high speed over first cosmic velocity, 

however a high thrust engine would be necessary to return to low orbit [8].  

To find an analytic solution to the general trajectory optimization problem is difficult, and many numerical methods 

are proposed to solve a particular profile. The main difficulty of an transatmospheric entry is the rapid change of 

atmosphere, the current gradient method used for trajectory optimization will cost a lot of time and memory because 

of the large gradients which forces the algorithm to refine the grids for a significant increase in computation time [9]. 
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The aim of this paper will be to continue the current work on trajectory optimization and then improve on two of 

direct trajectory optimization methods in order to circumvent the limitations brought by the classic gradient 

techniques. The solution proposed in this paper is to implement a higher level non-gradient optimizer to guide the 

gradient changes and would help smooth the control over the states discontinuities. Sequential quadratic 

programming (SQP) methods is considered to solve constrained nonlinear programming problems. And it is 

generally believed that SQP methods are sensitive to the initial value accuracy. Two heuristic optimizers, GA and 

PSO are introduced in this paper to optimize initial grids for SQP, which is named as Evolutionary collocation 

method.  

The paper is organized with Section 2 describing the skip entry problem, followed by introduction of three 

optimization algorithms, optimization objective and constraints. Section 3 presents the simulation results. Section 4 

gives a general comparison between two heuristic methods. 

2. Problem Definition 

General skip reentry problem can be divided into 5 phases: initial roll, down control, up control, Kepler and final 

entry. Phase 5 (landing) has been thoroughly studied. Considering the mission of SMV, the most challenging phase 2 

and 3 will be highlighted in this paper.  
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Fig. 1 Whole Phases description of skip reentry 

In this section we present the reentry problem. We detail the nonlinear dynamics, the constraints and the cost 

function.  

2.1 Atmospheric modeling 

For improved accuracy on the guidance before the initial entry and after the exit, the atmosphere is modeled up to 

1000km from the ESDU 77021 documentation. 

2.2 Dynamic model 

Our initial implementation uses the physical characteristics of the NASA space shuttle found in the literature. The 

original scenario was set up in British units so most of the literature followed the trend. For this work, international 

standard units were used except the heating. These parameters can easily be changed to fit a different vehicle. 

The equations of motion of the space shuttle are: 
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where r,  ϕ,  θ,  v,  γ,  ψ,  m,  T  are state variables, representing radial position, latitude (measured along the local 

meridian from the equatorial plane, positive northward), longitude (measured along the equator, positive eastward), 

velocity, flight path angle, heading angle, mass and thrust respectively. Here, angle of attack α, bank angle σ (angle 

between the lift vector and orbit plane) and thrust TC are control variables. 𝐿 and 𝐷 are the lift acceleration and drag 

acceleration respectively, which can be defined as: 

 2 / (2 )LL V SC m  (2) 

 2 / (2 )DD V SC m  (3) 

Where 𝐶𝐿 is the lift coefficient, 𝐶𝐷 is the drag coefficient and 𝑆 is reference surface area. 𝜌 is the density which can 

be achieved by ESDU 77021 toolbox. The aerodynamic parameters can refer to Reference 6.  

2.3 Solutions for Optimization 

The optimization problem can be regarded as a nonlinear programming problem. The direct collocation method 

discretizes all of the variables, equations of motion, and constraint condition equations, and accordingly transforms 

the SMV reentry trajectory optimization problem into a nonlinear programming problem. The optimal solution of the 

nonlinear programming problem is obtained using an appropriate method.  

Each phase is subdivided into n segments by nodes with corresponding state and control variables. Though the 

trajectory is divided into 2 phases, it is more efficient to have a number of nodes in each phase proportional to the 

time it takes to accomplish. 

The boundary constraints, initial and final conditions, and path constraints constitute nonlinear constraints on the 

discretized states x and control variables u in the trajectory optimization problem. 

The continuous optimization problem was therefore discretized into an NLP problem containing equality and 

inequality constraints on the vector. 

  min J f x  (4) 

Such that  

   0, 1,2, ,ih x i p    (5) 

   0, 1, ,jg x j p q     (6) 

Following chart gives a chronological view of the method: 1) Trajectory optimization for the descent. 2) Trajectory 

optimization for the exit. 3) Join the 2 paths on a new mesh based on Legendre pseudo-spectral collocation method. 4) 

SQP on the complete trajectory 
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Fig. 2 Flow chart of Trajectory Optimization (TO) 

The MATLAB Genetic Algorithm/ Particle Swarm Optimization function also accepts a hybrid function to refine its 

solution automatically. The NLP can therefore be ran on both segments separately before creating the new mesh and 

allows the user to skip the NLP on the complete trajectory. 

a. Genetic Algorithm 

A real-coded GA, where the chromosome for each individual was defined to be the vector of the NLP variables, was 

used for the multiple-variable trajectory optimization problem in this study [10]. 

Although the GA also required initial parameters such as the number of collocation points, the population size, 

convergence criteria, and the temperature cooling coefficient, it was less difficult to determine these parameters 

based on the results of previous research, and a statistical analysis was often good enough to make an intelligent 

selection.  

b. Particle Swarm Optimization 

PSO (Particle Swarm Optimization) algorithm was established by Kennedy and Eberhart [11], based on the model of 

social psychology. It take inspiration from the social behavior of groups of simple creatures as swarm of bees, 

colonies of ants, flocks of birds etc, which exhibit some form of collective intelligence based on information 

exchange. Each agent has two important elements: position and velocity. Every agent of the particle swarm must 

abide by the success experience of adjacent agents. Agents also have a memory containing the previous particle best 

position or personal best position and the swarm best position or global best position. All the agents can work 

together to search a best area of the high dimensional space. Reference [12-13] mentioned some extend study of 

PSO. 

c. Sequential Quadratic Programming 

The SQP algorithm proposed by Powell has been considered as one of the most efficient gradient methods for NLP 

problems [14, 15].  

The final result of GA and PSO are treated as the initial point of the SQP algorithm, and then the SQP algorithm is 

used to find a local optimum near the initial point to achieve a global optimum after remeshing the whole results 

based on Legendre-Gauss-Lobatto collocation methods. 

2.4 Optimization objective and constraints 

The descent and exit are separated in the heuristic method to make the parameters at the lowest point adjustable .  

Considering the prospective application of SMV, the target state at bottom point is highlighted, other control 

objective and constraints would be simplified. 

Control objective and constraints of two phases will be discussed separately. And the weighting method is adopted 

for the multi objective optimization.  
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Control variable, AOA and bank angle both are allowed to vary continuously, so a combination control is used in this 

paper.  

2.4.1 Descent phase for heuristic method 

(1) Optimization objective  

Multi optimization objectives are considered as follows. 

● To minimize the state error at bottom point including the altitude error, flight path error, longitude error, latitude 

error, heading error with target state. 

● To achieve a zero bank angle. Smaller bank angle means to have a level flight and maximize vertical lift for exit.  

● To maximize the velocity at the bottom point saves the thrust for exit.  

Aim State of control at bottom point is listed below. 

Table 1 Simulation parameter setting 

Bottom state value 

Height (km) 50 

Velocity (km/s) >3 

Flight path angle (deg) 0 

Heading (deg) 0 

Latitude (deg) 0 

Longitude (deg) 0 

Bank angle (deg) 0 

(2) Constraints 

● Angle constraints  

Simple angle constraints on the state variable and control variable are considered to demonstrate the effectiveness of 

two heuristic methods,   [−
𝜋

2
,
𝜋

2
] rad 

● Time constraint 

To ensure SMV finish descent in limited time.  

● Heating rate constraint 

The maximum heating rate usually happens at the bottom point which is closely related with velocity, height and 

angle of attack.   

 2 3 4 3.07

0 1 2 3Q 17700( ) (10 )c c c c v         (7) 

c0, c1, c2, c3 are coefficients with fixed values [9]. 𝜌 is atmospheric density.  

2.4.2 Exit phase for heuristic method 

(1) Optimization objective 

To minimize the altitude error and flight path angle error at the end of exit. 

(2) Constraints 

● Time constraint  

To ensure SMV finish exit in limited time.  

● Heading angle, latitude and longitude 
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Simple constraints are adopted: [−
𝜋

2
,
𝜋

2
] rad. 

● Angle of attack 

A positive value is adopted: [0,
𝜋

2
] rad. 

● Heating rate constraint 

Similar with descent phase. 

2.4.3 Whole phase for SQP 

(1) Control objective: 

● To minimize the positional error, flight path angle error and bank angle error at the bottom point. 

● To minimize the altitude error and flight path angle error at the exit point. 

● To minimize the total thrust applied. 

(2) Constraints: 

● Velocity at bottom point 

To save the energy in exit phase, a larger value is preferable: [5 10] km/s. 

● Position constraint at bottom point 

Longitude and latitude angle: [-0.2, 0.2] rad 

● Other constraints are similar to former settings in 2.4.1 and 2.4.2. 

3. Simulation Result 

In this part, two test cases are conducted with two heuristic methods. The initial condition and final state are listed in 

table 2.   

Table 2 Simulation parameter setting 

 Initial state Final state 

Height(km) 80 80 

Velocity(km/s) 7.5 Free 

Flight path angle(deg) -1 1 

Mass(kg) 90719 Free 

Latitude (deg) 80 Free 

Longitude (deg) -45 Free 

Heading angle (deg) 10 Free 

AOA (deg) 40 Free 

Bank angle (deg) 40 0 

 Descent phase Exit phase 

Number of nodes 30 30 

Thrust (N) 0 <2*10
6
 

Heatflux (BTU/ft
2
/s, MW/m

2
) 400/4.4 

Time (s) [500 ; 5000] [50 ; 1000] 
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It should be noted that in Reference [6], the Q𝑚𝑎𝑥 = 70, but it is an orginal value of NASA Space Shuttle nearly 

forty years ago. Considering the mission requirement of rapid change in attitude at the bottom point, a relatively high 

value is chosen here. 

The simulation can be divided into two scenarios: 1) if the initial position (latitude and longitude) is given a range 

and the numerical methods can run optimization to find the best boundary values for Phase 1 and 4. 2) If given the 

fixed value, a better comparison of state at bottom point can be made between two methods. 

Interface between optimization routines and high-level modeling packages is well established.  All the variables are 

stored in a single file that the user can modify at will. Models and methods are well seperated and easyly accessible. 

3.1 Heating flux curve 

 
                      Fig. 3 Heating flux based on GA                          Fig. 4 Heating flux based on PSO 

Figure 3 and 4 show the heating flux curve for two methods. Different from the skip re-entry of deep space 

exploration the maximum heating happens at the bottom point which is similar to the aeroassist maneuver. And the 

maximum heating value is below the constraint during whole phase.  

3.2 Skip reentry trajectory 

 
   Fig. 5 Skip reentry trajectory based on GA       Fig. 6 Skip reentry trajectory based on PSO 

Figure 5 and 6 show the trajectory of two evolution collocation methods, 30 nodes are used for collation. The 

trajectory shows similarity in humps and downs.  
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3.3 Variable curve of two Evolution Colocation methods 
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Figure 7 shows the optimization results given simple constraints on the control variables using numerical methods 

(blue line). After remeshing the optimization results, SQP gives the final optimization result of NLP problem (red 

line).    

Although there are humps and downs during descent, the velocity remains decreasing with minimum at the bottom 

followed by a small increase in exit phase to go back to target altitude. 

The control variable of AOA decreases gradually to achieve a relatively high velocity and decreases to a value to 

max L/D at the bottom point. Although in realistic space shuttle control, AOA is maintained at a constant value and 

decrease linearly, the result in this paper can act as reference. 

Bank angle is modulated to control the drag acceleration level and to null range errors. During exit, the bank angle is 

controlled to zero ensuring minimum thrust. Bank angle is relatively simple to control with rotational thrusters and 

most vehicles in history tend to use bank angle for trajectory control. 

For most time of descent, the flight path angle remains between 0 and 2 degree, but in the exit phase, the flight path 

angle increase to nearly 3 degree because the vehicle’s rate of ascent increases. 

Although the simulation result shows similarity in control and state variable, the difference between GA and final 

NLP result is smaller than PSO. 

3.4 Error analysis at the bottom point  

In former simulation, the initial state is changable within a range, so the atmospheric interface reentry point is also 

optimized [16]. However, to generally compare the efficiency of two heuristic methods at the bottom point, it is 

necessary to analyze the trend with fixed state wihch means the same longtitude, latitude and so on in Table 1, the 

optimization results are showen as follows. 

 

 

Fig. 8 Simulation result with same initial states 

From Figure 8, we can see that both methods can achieve a predetermined altitude at the bottom point, however, GA 

can achieved a better initial result than PSO because sometimes PSO may be trapped in local minimum fixing state 

values randomly.    

4. Conclusions 

An optimal control model is proposed to describe the re-entry problem and the direction collocation method was 

used to discretize the optimization problem.  
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This paper describes two heuristic methods which provide initial results for SQP to solve the NLP. The evolutionary 

collocation method could perform a global search. Two test cases are studied and a general comparison is given in 

Table 3 and 4.  

Table 3 Comparison of simulation time 

Time to run GA trajectory 

Time to run SQP  

512.27s 

226.22 s Computation time of PSO is  only 

50 percent of GA. 
Time to run PSO trajectory 

Time to run SQP  

245.48 s 

124.99 s 

Table 4 Comparison between two heuristic methods 

Three methods Computation cost Optimum Precision agents 

Genetic 

Algorithms 

expensive computational 

cost 
Global optimum Lowest precision 

individuals are in 

rivalry 

Particle Swarm 

Optimization 

Computationally less 

expensive, easy to 

complement 

Sometimes Be 

trapped in local 

optimum 

Medium precision, 

closer to SQP curve 

Swarm intelligence,  

population-based 

cooperative behavior 

of agents 

 

The time to run has a close relation with the generations of GA and particles of PSO, in above simulation, two 

empirical settings are adopted with generations and particles equal 100 and 40 respectively [17]. 

So a final conclusion can be reached as follows: 

1) The method in this paper minimizes the state error at the bottom point, ensuring the specified mission. 

2) With the pre optimized grids provided by heuristic methods, it takes less time for SQP to solve the NLP problem 

with higher precision.  

3) PSO shows advantages in computation efficiency over GA. If the constraint is defined more accurately, the 

calculation time could be further reduced. However, during simulation process, PSO may be trapped in a local 

optimum value. 

4)  From figure 3and 4, we can see that the heating flux hits the maximum value at the bottom point, it would be 

interesting to investigate how to achieve a trade off between velocity and heating flux.  For future work, some other 

multi-objective optimization methods can be considered, because the current weighting method depends on artificial 

factor. 
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