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Abstract 
Based on the models of brittle failure, the strength-size scaling of the structural glass ceramic material 
has been studied, the size and distribution of flaws initiating material fracture have been evaluated, the 
safety factors of the components made from this material as a function of predetermined failure 
probability (required reliability), material structure homogeneity, component dimensions and material 
microstructure element size have been obtained.  

1. Introduction 

The use of the developed at ORPE “Technologiya” high-density glass-ceramic lithium-aluminum-silicate-based 
material OTM 357 as a structural material for highly loaded rocket fairings causes higher requirements placed upon 
its load-bearing capacity. The strength reliability of the specific fairing design depends on the material 
inhomogeneity extent which in its turn depends on the manufacturing methods responsible for various kinds of flaws.  
The investigation of glass ceramics strength from the viewpoint of statistical theory of brittle failure makes it 
possible to predict the failure probability and to substantiate the safety factor of the components made from this 
material. The statistical models of brittle failure strength are constructed under the assumption that the scatter in 
material strength values is a result of random inhomogeneity in the material and it depends on the distribution of flaw 
sizes in its microstructure. In this case the distribution of local strength values over the material volume elements is 
associated with the distribution of the most dangerous flaws over these elements. 

2. Brittle failure models 

Two models were used to describe statistically the strength of brittle materials: the Weibull model1 based on 
asymptotic distribution of extreme values and the McClintock model2 in which the relationship between the 
component size and the size of the material microstructure element is taken into account. 
The Weibull model of strength distribution comes from an inverse power-series distribution of flaw sizes: 

 n
cckcH −−= 1)( , (1) 

 
where H(c) is the cumulative distribution function, c is the flaw size, kc and n are the distribution parameters. The 
exponent n the value of which describes the scatter in flaw sizes is related to the Weibull distribution modulus m.  
The Weibull model enabling one to establish the relationship between the failure probability, stress and loaded with 
maximum stress material volume is most often used in the form of two-parameter distribution 
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where V is the volume of the element under consideration, σmax is the maximum tensile stress in this volume, σc and 
m are the distribution parameters, kV is the coefficient describing the type of loading. The load factor kV is the 
measure of stress distribution uniformity. Under uniform tensile kV = 1. Under pure flexure with the uniform 
distribution of stresses over the specimen length kV = [2(m + 1)]–1 and under three-point flexure kV = [2(m + 1)2]–1. 
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From the two-parameter description of the statistical strength distribution the relationship between the strength and 
effective stressed volume (surface area) of the material can be determined, for instance, in the specimen and in the 
component  

 m
efef VV /1

1221 )/(/ =σσ , (2) 

 m
efef SS /1

1221 )/(/ =σσ , (3) 
 
where 1σ , Vef1 and Sef1; 2σ , Vef2 and Sef1 are average strength, effective stressed volume and effective stressed 
surface area of the specimen and component, respectively. These relationships make it possible to recalculate 
strength values obtained with the use of different test schemes and specimens of different size depending on the 
location of the most dangerous flaws – in the volume or over the surface. 
One of the approaches correlating the integrity of the component material with the typical size of flaws is the 
McClintock statistical model. It differs from the Weibull model in that it provides a possibility to substantiate the 
nature of “the weakest link” and to predict the influence of the ratio of ceramic component size to the size of ceramic 
material structure element on the strength. According to this model the probability of failure for the case when the 
stress is lower than σ is 
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where A is the surface area of the component, S is the area of the material microstructure element, a and b are the 

distribution parameters, cK 2/IC0 ≅σ  is the strength of the material with a crack having the length c, KIC is 
critical stress intensity factor. 
The distribution parameters a and b are related to the probability (w) of the existence of flaw in the form of a crack of 
size c by the following expressions:  
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From equation (4) the expression for the strength with predetermined failure probability can be obtained 
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Eq.6 is valid for sufficiently large surface areas and small values of probability Pf. For the use of the probabilistic 
approach to be valid the ceramic component surface area under consideration must contain about 103 structure 
elements3. McClintock studied his model for A/S from 1×102 to 1×105. 

2. Investigation results 

The distribution of strength values for three OTM 357 specimens of different size obtained in three-point flexure 
tests are shown in Weibull coordinate grid in Fig.1. Figure 2 shows a relative decrease in strength with a relative 
increase in volume and surface area described by strength-size effect equations (2) and (3) with Weibull moduli m 
for effective volume and surface area equal to 12.8 and 8.5, respectively.  
The distribution of flaws is represented by the Weibull distribution of strength in terms of the dispersion of strength 
or the value of the Weibull modulus m. Judging from the values m obtained, the size and consequently the hazard 
chance of glass ceramics surface flaws have wider distribution than the size of volume defects. 
The dependences of strength-size effect obtained make it possible to predict the average tensile strength of glass 
ceramics in the component with due regard for its effective volume (surface area) equivalent to the uniform tensile. 
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Figure 1: The distribution of flexural strength values (σb) for three different-size specimens  

made of glass ceramic material OTM 357 

 
Thus, for a glass ceramic aerial fairing having Vef ≈ 130,000 mm3 and Sef ≈ 40,000 mm2 the values of the average 

tensile strength obtained from the values of flexural strength with the equation m
bt m /12 ])1(2[ −+= σσ  and 

predicted with equations (1) and (2) are 48 and 34 MPa, respectively. 
The results of fairing structure analysis by finite element method show that the maximum stress in the fairing shell 
material caused by applied aerodynamic loads does not exceed 18 MPa. Hence the predicted safety factor of the 
fairing structure material will be 2.6 in case of failure from the volume flaws and it will be 1.9 in case of failure from 
the surface flaws. This conclusion was supported in the full-scale destruction tests of fairings from the results of 
which the experimental values of the safety factor from 2.3 to 3.5 were obtained. 
The probability of failure beginning from the surface depends both on the surface flaw size distribution parameter m 
and on the flaw depth ∆d. 
According to the model described by Evans4 and based on the statistics of flaw size and location, the failure 
probability obtained at the stress intensity factor KI = KIC is 
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where cKf πσ /I= , c is the volume flaw size, Vо is the elementary (of the same order with the flaw size) 
volume. The use of the last equation together with strength-size effect equation (2) makes it possible to evaluate the 
depth of a surface flaw ∆d. In this case the relative rupture stress for two bodies of different effective size is 
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Using the abovementioned data on the values of effective volumes and surfaces of the specimens and components 
and also calculated value of the Weibull modulus and solving this equation with reference to ∆d, we obtain that a 
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minimum size of flaws leading to the component failure is within 150 and 200 μm. This result goes with the 
statement5 that according to the models of Griffith model type the size of flaws limiting the strength of most 
structural ceramic materials is from 5 to 200 μm.  
 

 
Figure 2: The strength-size effect of the glass ceramic material OTM 357 calculated from relative volumes V/Vо and 

surface areas S/Sо (σо = 125 MPa) for the specimen 4×4×50 mm in size 

 
It should be noted that under ceramic component manufacturing conditions it can be difficult to detect with assurance 
the surface flaws of this size by nondestructive testing methods. Thereby it is essential both to develop and to use the 
advanced nondestructive testing methods in the manufacturing of ceramic fairings and to use the probabilistic ratios 
based on brittle failure models of McClintock model type in order for the similar flaws and their effects to be 
evaluated. 
The parameters of this model a and b can be determined from the median and from the ratio of quantiles of the 
empirical strength distribution. From equation (6) the ratio of the third and first quantiles is 
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At the same time it follows from the function of the Weibull distribution6 that  
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The interquantile ratios obtained from the results of three-point flexure and direct tension tests of OTM 357 
specimens of different size are in satisfactory agreement with relationship (8).  
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The value of the surface area S depends on the size of material microstructure element d which in its turn determines 
the flaw (crack) size c, that is c ≈ d. Then the relationship of S on the probability w of the existence of the crack of 
size c can be expressed as 

 2/12 )/1( wdS = . (9) 
 
Substituting equations (8), (9) and the expression for a from equation (5) into equation (7), we obtain 
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Now knowing the Weibull modulus m, the component surface area A and the flaw size d, we can determine the 
probability w. 
Fig. 3 shows the functions A/S = f(m) obtained for the stressed surface area of the fairing shell A = Sef = 40,000 mm2 

and S calculated by equation (9) for different sizes of the material microstructure elements d. As can be seen from 
this figure the ratio A/S satisfies the McClintock model. 
 

 
Figure 3: The dependence of the ratio of the component surface area to the microstructure  

element surface area on the Weibull modulus 

 
The safety factor η for brittle ceramic materials representing the ratio of the average (median) material strength to the 
maximum stress σmax acting on the component must be evaluated with due regard for the acceptable level of failure 
probability Pf, that is  
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where the factor k = σ(Pf )/σ(0.5) corrects the safety factor value in accordance with the required reliability of the 
component material. According to equation (6) the coefficient k is 
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Fig. 4 gives obtained by eq. (11) values of the correcting factor k for a given value A = 40,000 mm2 versus the 
Weibull modulus, the size of material microstructure element d and the failure probability Pf . It is obvious that the 
value of the coefficient k and the safety factor decrease with the increase of the required reliability of the material, 
the size of the microstructure element (flaw) and with the deterioration of structure homogeneity (defect structure). 
For the abovementioned effective sizes of the fairing from the glass ceramic material OTM 357 having the Weibull 
modulus m = 5.5 which was obtained from the results of the material specimen uniaxial tension tests, the correcting 
factor k at the failure probability Pf = 0.01 and the flaw size d = 200 is equal to 0.71. Then in case of the average 
uniaxial tensile strength of the specimens from OTM 357 equal to 68 MPa the safety factor of the fairing evaluated 
by eq. (9) is η = kσ(0.5)/σmax = 0.71×68/18 = 2.7.  
This result is close to the safety factor value evaluated above with the Weibull model and obtained in the field tests 
of the component. The advantage of the McClintock statistical approach consists in the possibility to predict the 
influence of the ratio of the component size to the microstructure flaw size on the reliability. 
 

 
Figure 4: The correcting factor k versus the Weibull modulus, material structure element size and failure probability 

 
Based on the results of the uniaxial tensile tests of glass ceramic specimens and on the value of critical stress 
intensity factor KIC = 1.33 MPa·m1/2 the dependence of the density of flaws in the material on their size (Fig. 5) has 
been obtained.  
The flaw density δ was calculated according to the following equation: 
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where Mi is the number of failed specimens under i-th failure stress, Ni-1 is the number of specimens remained under 
lower stress after the exclusion of the failed specimens, V is the effective volume of the uniaxial tensile test 
specimen, N is the number of tested specimens. 
The results allow us to conclude that about 2/3 out of all irregularities in the unit volume of the OTM 357 material 
are the flaws no more than 150 μm in size and 1/3 – from 150 to 300 μm and higher. The flaws higher than 300 μm 
are rare in occurrence (6 out of 100 specimens).  
In accordance with the Weibull modulus estimation obtained by the maximum-likelihood technique the exponent n 
in the function of flaw size distribution (1) is equal to 1.85. The parameter kc can be determined by fitting it to the 
empirical points (Fig. 5) of differential function of the flaw size distribution density 

 rn
c cgnckcg −+− == 0

1)( , (13) 
 
resulting from its integral expression (1) where gо = kcn, r = n + 1. Fitting by the least-square method makes it 
possible to obtain the function of the distribution density g(c) = 152 c–2.85. 
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Figure 5: The dependence of flaw density on the flaw size 

 
The probability that the flaws in the volume V under uniform tension are larger than c1 is 
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Using g(c) obtained earlier, the probabilities of existence of flaws ≥ c1 have been calculated by eq. (14). These 
probabilities have been obtained both for a standard test specimen and for the glass ceramic shells with the symbols 
“component A1” and “component A2” which differ in volume by a factor of five (Fig. 6). It is obvious that in case of 
the probability equal to 1 there are the flaws 200 μm in size in the stressed volume of A1 shell while in the shell of 
the component A2 under the same probability there may be the flaws 400 μm in size. The probability of the flaws 
400 μm in size in A1 is equal to 0.53. 
To change from the flaw size distribution to the failure probability, let us insert eq. (13) into eq. (14), express the 
critical flaw size in terms of the maximum stress σmax acting on the component and obtain the expression for the 
failure probability under the stress less than σmax  
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The results of failure probability calculations by eq. (15) are given in Table 1. The safety factor was calculated as the 
ratio of the average (equal to 68 MPa) strength value of the specimens under tension to a maximum load. 
Taking into account maximum stresses in A1 and A2, the flaws 400 μm are not critical as the failure stress equal to 
40 MPa in this case is higher than the maximum performance stress. However the strength reliability of the 
component A2 having larger volume decreases as there may exist flaws of larger size in it. This fact should be taken 
into account in structural design. 
 

Table 1: The probability of failure material of the components 

Component σmax,  
MPa 

Safety  
factor 

Stressed 
volume, mm3 

Critical flaw 
size, mm 

Failure 
probability 

A1 18 3.7 130,000 ≈3.6 0.0097 

A2 25 2.7 702,000 ≈1.9 0.1630 
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Figure 6: The probability of presence the flaws more than c in glass ceramic components 

4. Conclusions 

It is shown in the paper that the use of two different approaches based on the statistical data on strength and fracture 
mechanics relationships for the prediction of failure probability and safety factor of glass ceramic rocket fairings 
gives closed results. The possibility is shown to relate the integrity of the component material to a typical size of 
microstructure element or flaw and to predict the influence of dimensional relationship of the ceramic component 
and ceramic material microstructure element on the strength. It is also shown in the paper that in case of availability 
of large-sized flaws in the component material volume the safety factor and consequently the strength reliability of 
the component decrease. The probability interpretation of the safety factor is presented. The results obtained 
supplement the concept of relationship between the strength of the glass ceramic material OTM 357 and the 
availability of flaws in its structure. 
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