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Abstract

This article presents several MDO formulations which
are used in complex system design. Their features,
advantages and drawbacks are exposed. Then, in order
to compare their performances, they are theoretically
experimented on a test-case concerning the conceptual
design of aSuperSonic Business Jet (SSBJ).

keywords: Multi Disciplinary Optimization, feasibil-
ity studies, algorithms.

Introduction

Research of the best performance, the best quality at the
lowest cost, is a key point in the field of aerospace. It
is compulsory to master design and sizing process, since
any error leads to huge consequences to an operational
or economical point of view.

A global perception of multi-disciplinary optimiza-
tion is given in [1] and [2]. A natural example is aircraft
design. A lot of disciplines are involved, such as struc-
tural mechanics, aerodynamics or propulsion. There is
also aeroacoustics with the aim of reducing the noise.

Aircraft design is a complex process due to the wide
number of disciplines involved. Several parameters can
be managed by only one discipline or can be shared.
There are also interactions among disciplines : outputs
can be injected as inputs in other disciplines. Moreover,
disciplinary objectives are often conflicting.

In optimal design research, engineer skills and know-
how is no longer sufficient. One has to develop design
and optimization techniques which will enable to inte-
grate disciplinary methods. This will allow the research
of a global optimum or a Pareto front. Starting from
these results, experts will be able to discuss in order to
find a compromise.
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ONERA, the french aerospace lab, has started
a project in order to carry out studies on Multi-
Disciplinary Optimization (MDO). Several methods are
investigated, such as model reduction, aerodynamics
and structures optimization, acoustics and MDO formu-
lations. MDO formulations comprise the different ways
to cope with a multidisciplinary optimization problem.

Technical background is described in section 1. Then
4 MDO formulations, which are called MDF, IDF, IDF
sequential and CO, are presented in section 2. Finally,
we test them with a Super Sonic Business Jet test-case
in section 3.

1 Technical background

In this part, the tools that are used to set up MDO for-
mulations are described. Concepts such as disciplines,
different kinds of design variables, interactions between
disciplines, and optimization, are defined and explained.

1.1 Disciplines

The process of complex system design can be divided
into several sub-processes, presently disciplines, in or-
der to make it easier to solve. For example, in the case of
aircraft design, disciplines are currently structural me-
chanics, aerodynamics and propulsion. Each discipline
taken separately is well understood by specialists and
produces a computer program which describes aircraft
behavior from a disciplinary point of view. It takes into
account several variables which are separated into three
main classes : private, shared, and coupling variables.

. i stands for discipline i.

. Xi : discipline i private variables. It acts only on i.
Let X be

⋃
i

Xi.
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. Z : shared variables. They are common for at least
two disciplines.

. Y ∧
ji : predicted coupling variables, input for i and

originated from j.

Let Y ∧
i be

⋃
j

Y ∧
ji : all the coupling variables that

act as input for i.

Actually,
⋃
j

Y ∧
ij contains all the coupling variables

originated from i that act as input for other disci-
plines.

All these variables can be gathered in Y ∧ =
⋃
i

Y ∧
i .

Considering these variables, discipline i computes
outputs Yi.

[Yi, Y
∗
i ] = Yi(Xi, Z, Y ∧

i )

. Yi() refers to discipline i computer program.

. Yi output vector.

. Y ∗
ij is calculated by i and destined for j.

Y ∗
i =

⋃
j

Y ∗
ij are the computed coupling variables

originated from i and destined for other disciplines.

In effect,
⋃
j

Y ∗
ji stands for the calculated coupling

variables computed by other disciplines and des-
tined for i.

Figure 1 illustrates how a discipline works.

-

-

-

Y ∧
i

Z, Xi
Yi, Y

∗
i

Di

Figure 1: discipline i

In the next part, the differences between :

. Y ∧
i and

⋃
j

Y ∗
ji

. Y ∗
i and

⋃
j

Y ∧
ij

are exposed.

1.2 Interdisciplinary interactions

Interdisciplinary interactions can be illustrated with an
aero-structural example. By taking into account the
wing shape, aerodynamics algorithms can compute the
pressure field. This pressure deforms the wing. New
wing shape produces a new pressure field, and so on. In
effect, any disciplinary changes will affect other disci-
plines. The physical problem is solved when the wing
shape matches the pressure field.
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Figure 2: interactions between two disciplines

Interactions are shown on figure 2.

One starts from configuration [X, Z, Y ∧
ji ].

A new Y ∗
ij = Y ∗

ij(Xi, Z, Y ∧
ji ]) is calculated.

Then, Y ∧
ij ← Y ∗

ij : this variable is injected in j, which
computes Y ∗

ji = Y ∗
ji(Xj , Z, Yij∧).

In this two disciplinary case, one has Y ∧
i = Y ∧

ji and⋃
k

Y ∗
ki = Y ∗

ji. Thus,
⋃
k

Y ∗
ki becomes different from initial

configuration Y ∧
i .

In reality, Y ∧ values are searched for minimizing the
quantity of

|Y ∧ − Y ∗(X, Z, Y ∧)|

That is to find Y ∧ which matches Y ∗.

. In some cases, where the system has good proper-
ties, it can be solved with iterative methods, like
Fixed Point Algorithm or Gauss-Seidel Method.

. In other cases, Gauss-Newton Method can be used.

. This design step is called Multi Disciplinary Analy-
sis (MDA).

. Another way to deal with interdisciplinary coher-
ence, within an optimization process, is to add
equality constraints such as

Y ∧ − Y ∗(X, Z, Y ∧) = 0

With all these variables, we have a large configuration
set to explore in order to find the best aircraft, according
to the optimization objective and the fidelity level of the
disciplinary models. We need optimization tools which
are able to carry out this task, in an automatic and effi-
cient way.

1.3 Optimization

Optimization problem can written as follows:
min

x
F (x)

G(x) ≤ 0
H(x) = 0

xl ≤ x ≤ xu

Vector x includes all design variables.



. F is the objective function. It could be the aircraft
total weight or range.

. G is the inequality constraints vector. Discipline i
has its own requirements which are expressed by
Gi. Let G =

⋃
i

Gi

. H is the equality constraints vector and represents
interdisciplinary coherence constraints.

. Each variable has a lower bound and an upper
bound, in order to perform optimization within a
reasonable configuration set.

From a practical point of view, we use SQP algorithm,
since it matches non-linear optimization problems well.
Multiple local optima problems can be addressed by an
exploration stage, and several optimizations which start
with the best configurations found previously.

MDO formulations can be now set up with all these
tools.

2 MDO formulations

In this section, different MDO methods are described.
Their characteristics, advantages and drawbacks are
pointed out, as well as their similarities and differences.
These methods are explained in more details in [3] and
[4].

2.1 Multi Disciplinary Feasible

This approach is also called All In One or Fully Inte-
grated Optimization. It is the reference for MDO for-
mulations. Diagram 3 represents this formulation.

Starting from configuration [X, Z], the system carries
out a coupled analysis and determines outputs. Then, Y
is given to the optimizer who chooses a new point to test.

In effect, variables X , Y and inequality constraints G
are considered at the same level. Coupling variables Y ∧

and Y ∗ are only considered during coupled analysis.

++ Each optimization point fulfills interdisciplinary
coherence, that will lead to reliable results. More-
over, system analysis can be seen, from an opti-
mizer point of view, as a black box.

- - There is a lack of modularity. System analysis is
made of one compact block and it is hard to adapt
to any change.

MDA can be highly time-consuming. It is carried
out for each tested point, even when gradient is cal-
culated with finite differences.

A solution to this last drawback is called Global Sen-
sitivity Equation. This method [5] enables less computer
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min
X,Z

F (X, Z)

Xl ≤ X ≤ Xu

Di

Zl ≤ Z ≤ Zu

YX, Z

OPTIMIZATION

SYSTEM ANALYSIS

Dj

Y ∗
ij

Y ∧
ij

Y ∧
ji

Y ∗
ji

G(X, Z) ≤ 0

Figure 3: MDF formulation

time consumption. In fact, it operates on gradient cal-
culation with finite differences. First, interdisciplinary
coherence is established at one point. Then, sensitivi-
ties are computed for each discipline taken separately.
Finally, the gradient at this point is given by solving a
linear system.

Another way to cope with this problem is to treat in-
terdisciplinary coherence differently, as we will see in
next sections with IDF and CO.

2.2 Individual Disciplinary Feasible

This formulation described in figure 5 is also called All
At One or Simultaneous Analysis and Design. In this
method, disciplinary exchange is not direct, but exists
through the optimizer. Interdisciplinary coherence is en-
sured with equality constraints, such as:

Y ∧ − Y ∗(X, Z, Y ∧) = 0

In fact, variables X , Z, and Y ∧ and inequality con-
straints G are considered at the same level. Starting from
configuration [X, Z, Y ∧], disciplinary outputs [Y, Y ∗]
are generated and then given to the optimizer.

++ MDA is never carried out.

- - Outputs are not reliable since interdisciplinary co-
herence is not always effective. Therefore it can
lead the optimization process to nowhere. It is also
difficult for the optimizer to deal with a large num-
ber of nonlinear equality constraints.
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Zl ≤ Z ≤ Zu

Y ∗ − Y ∧ = 0

X, Z, Y ∧

Di Dj

ANALYSIS

OPTIMIZATION

Y, Y ∗

Xj , Zj , Y ∧
j

min
X,Z,Y ∧

F (X, Z, Y ∧)

Xl ≤ X ≤ Xu

G(X, Z, Y ∧) ≤ 0

Xi, Zi, Y
∧
i

Figure 4: IDF formulation

In the next part, a formulation known as IDF sequen-
tial, which reduces the number of equality constraints, is
presented.

2.3 Individual Disciplinary Feasible sequential

? ?

?

Y i∧ −
S
j

Y ji∗ = 0

X, Z, Yi
∧

ANALYSIS

SYSTEM OPTIMIZATION

G(X, Z, Y ) ≤ 0

Dj

Y,
S
j

Y ∗
ji

Y ∗
i

min
X,Z,Y ∧i

F (X, Z, Y ∧
i )

Xl ≤ X ≤ Xu

Zu ≤ Z ≤ Zl

Di

Figure 5: IDFS formulation

IDF sequential is also called IDFS. As it is illustrated
in figure 5, we reduce the set of predicted coupling vari-
ables controlled by the optimizer to Y ∧

i .
Starting from configuration [X, Z, Y ∧

i ], discipline i
calculates its outputs [Yi, Y

∗
i ] and feeds other disciplines

with Y ∗
i . Once disciplinary analyses are done, outputs

[Y,
⋃
j

Y ∗
ji] are given to the optimizer.

++ Compared with the IDF method, the optimizer has
to manage a small number of predicted coupling
variables and inequality constraints.

- - It is not obvious that, |Y ∧
i −

⋃
j

Y ∗
ji| convergence

leads to a the global |Y ∧ − Y ∗| convergence.

2.4 Collaborative Optimization

-

-

??

Optimization j

Optimization i

Y, Y ∗

min
Xj

|
S
k

Y ∧jk − Y ∗j (Xj , Zj , Y ∧j )|2

Yi, Y ∗i

Yj , Y ∗j

min
Xi

|
S
k

Y ∧ik − Y ∗i (Xi, Zi, Y ∧i )|2

Zj , Y ∧j ,
S
k

Y ∧jk

Zl ≤ Z ≤ Zu

G(Z, Y ∧) ≤ 0

Y ∗ − Y ∧ = 0

G(Xi, Zi, Y ∧i ) ≤ 0

Xl
i ≤ Xi ≤ Xu

i

G(Xj , Zj , Y ∧j ) ≤ 0

Xl
j ≤ Xj ≤ Xu

j

Z, Y ∧

SYSTEM OPTIMIZATION

min
Z,Y∧

F (Z, Y ∧)

Zi, Y ∧i ,
S
k

Y ∧ik

Figure 6: CO formulation

CO formulation is shown in diagram 6.
In this method, as in IDF, interdisciplinary coherence

is ensured by equality constraints. Moreover, there is a
bi-level optimization.

Actually, Y ∧
i is given to discipline i as a set local ob-

jectives. Then, i has to settle its Xi in order to match
these targets, while satisfying its disciplinary inequality
constraints Gi. That is to solve the following minimiza-
tion problem :

given[Zi,Y∧]
min
Xi

|
⋃
k

Y ∧
ik − Y ∗

i (Xi, Zi, Y
∧
i )|2

Gi(Xi, Zi, Y
∧
i ) ≤ 0

X l
i ≤ Xi ≤ Xu

i

To illustrate this method, structures is discipline 1 and
aerodynamics is discipline 2. Y12 is the wing shape,
and Y21 the pressure field. The system asks structures
to compute a wing shape close to the target Y ∧

12, by tak-
ing into account the shared variables Z, and the targeted
pressure field Y ∧

21.



Then discipline 1 has to find its X1 in order to mini-
mize

|Y ∧
12 − Y ∗

12(X1, Z1, Y
∧
21)|2

This is the same with aerodynamics, where X2 is
searched to minimize

|Y ∧
21 − Y ∗

21(X2, Z2, Y
∧
12)|2

In reality, some values of Z and Y ∧ do not enable
the satisfaction of the disciplinary constraints Gi. In this
case, the positive values of vector Gi are given to the
system optimizer. Then, it can find out the right values
of Z and Y ∧ that will allow admissible disciplinary con-
figuration.

In this paper Z and Y ∧ are controlled by the system
optimizer, and X is driven by disciplinary optimizers.
Concerning the original version of CO that is described
in [6], Z is driven by disciplinary optimizers and the
system optimizer.

++ Disciplinary objectives are dynamically allocated
by the system optimizer. This approach matches
well the company’s organization, in which an en-
tity oversees the design and the other disciplines
trying to reach targets with their own means.

- - As for IDF, it is hard to deal with a lot of equality
constraints. In addition, disciplinary optimizations
can be time-consuming, since whenever discipline
i is called, Xi is optimized.

In the next section, these formulations are illustrated
an compared with the mean of an aircraft conceptual de-
sign test-case.

3 Application

3.1 The SSBJ test-case

This test-case is provided by Sobiesznanski-Sobiesky
and widely used in literature [7]. It was created es-
pecially for testing MDO formulations and enables the
conceptual design of an SSBJ.

Incidentally, models are easy to dispose in order to
organize the different formulations and they are not time
consuming.

Figure 7 represents SSBJ dependency diagram.
There are four disciplines. Three of them represent

design, such as structural mechanics, aerodynamics and
propulsion. The fourth is dedicated to aircraft perfor-
mance, taking into account the outputs of the other dis-
ciplines, will determine SSBJ range. There are interac-
tions between them and they calculate inequality disci-
plinary constraints.

There are twelve disciplinary constraints.
Shared variables are :
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X = [Cf ]

X = [T ]

Λ, Sref

L/D

SFCWE ESF

AR, Λ, Sref

t/c, AR t/c, h, M

[M, h] [M, h]

σ1→5 ≤ 1.09

0.96 ≤ σ ≤ 1.04

0.5 ≤ ESF ≤ 1.5

DT ≤ 0

Temp ≤ 1.02

dp/dx ≤ 1.04

X = [λ, x]

D

Z = [t/c, h, M, AR, Λ, Sref ]

structure
WT , Θ

aéro

WT , WF

L

propulsion

performance

R

Figure 7: SSBJ test case

- Z

t/c thickness/chord
h cruise flight altitude
M Mach number
SREF wing reference area
Λ wing sweep
AR aspect ratio

Now, private variables Xi, shared variable subset Zi,
and coupling variables in input Y ∧

i and output Y ∗
i , are

exposed for each disciplines.

- Discipline 1 : Structure

X1 λ taper ratio
x box section

Z1 AR,Λ
t/c, SREF

Y ∧
21 L lift

Y ∧
31 WE engine weight

Y ∗
12 WT total weight

Θ wing twist
Y ∗

13 WF fuel weight
Y ∗

14 WT ,WF



- Discipline 2 : Aerodynamics

X2 Cf skin friction coefficient
Z2 AR,Λ,M

t/c, SREF , h
Y ∧

12 WT total weight
Θ twist

Y ∧
32 ESF engine scale factor

Y ∗
21 L lift

Y ∗
23 D drag

Y ∗
24 L/D lift to drag ratio

- Discipline 3 : Propulsion

X3 T thrust
Z3 h, M
Y ∧

23 D drag
Y ∗

31 WE engine weight
Y ∗

32 ESF engine scale factor
Y ∗

34 SFC specific fuel consumption

- Discipline 4 : Range

Z4 h, M
Y14 WT total weight

WF fuel weight
Y24 L/D lift to drag ratio
Y34 SFC specific fuel consumption
Y4 R range

The aim of optimization is to maximize the range
(Y4), and to respect all disciplinary constraints.

Even if this SSBJ example expresses disciplinary or-
ganization well, it does not represent the complexity
encountered in industry. Moreover these semi-empiric
models are not always physically reliable.

In the next section, MDO formulations concern-
ing this test-case are implemented, with the mean of
Model Center Software developed by Phoenix Integra-
tion (www.phoenix-int.com).

3.2 Results

Model Center enables the testing of MDO formulations
on complex system cases, by wrapping easily disci-
plinary modules and linking them with other disciplines
or optimizers, and building the corresponding workflow.

Tables 1 and 2 present variables and results obtained.

var MDF CO IDF IDFS
shared
t/c 0.05989 0.05505 0.05997 0.05995
h 60000 60000 60000 60000
M 1.4 1.4 1.4 1.4
AR 2.5 2.5 2.50001 2.5
Λ 70 70 69.4145 70
SREF 1500 1483.05 1477.88 1500
structure
λ 0.25626 0.24901 0.27917 0.1
x 0.76418 1.0389 0.88459 0.75
aero
Cf 0.75 0.75 0.75 0.75
propulsion
T 0.15624 0.13599 0.15622 0.15624

Table 1: Optimal variables as a function of the MDO
formulation used

Shared variables are roughly similar. The largest dif-
ferences are for variable SREF . From a physical point
of view, wing surface should be as large as possible for
maximizing the fuel capacity and reducing the induced
drag. This enables to maximize the range.

Concerning structural variables, except for IDF se-
quential, λ are quite similar. x is more dispersive. Vari-
ables [λ, x], which are obtained with IDF sequential,
reach their lower bounds. Cf is always minimal. T is
quite similar, excepted for CO where it has a low value.

outputs MDF CO IDF IDFS

range

R 3494.52 3248.76 3451.65 3505.46
L/D 13.3528 14.0934 12.7454 13.1514
WT 74253.3 74971 70778.1 73161.7
WF 19317.9 17651.2 18959.9 19334.6
Sfc 0.92393 0.93454 0.92395 0.92393

call number

struct 239 639 104 460
aero 239 717 120 367
prop 239 440 64 51
range 45 77 136 184
total 762 1873 424 1062

Table 2: Results as a function of the MDO formulation
used

Range is calculated with the Breguet-Leduc formula:

R =
M(L/D)661

√
θ

SFC
ln

(
WT

WT −WF

)



Actually, θ is an internal variable of the discipline 4.
It has no link with the Θ variable which is used in the
structures discipline.

IDF sequential has a better range than MDF, due to
its lower total weight WT , larger fuel weight WF , and
better L/D ratio. This can be explained with variables
[λ, x] which are smaller in IDF sequential.

The best number of calls is reached by IDF. Assuming
that each module call costs alike, IDF seems to be more
time efficient than others.

3.2.1 MDF

Figure 8: MDF

Figure 8 shows MDF implementation in Model Cen-
ter.

MDA calls each discipline 4 to 8 times and the cou-
pling variables converge with a 10−5 accuracy.

Results obtained with this formulation are considered
as a reference for comparison.

3.2.2 IDF

Figure 9: IDF

Figure 9 describes IDF in Model Center.

Optimization is highly sensitive to constraint sensibil-
ity parameters. The number of discipline calls for IDF is
lower than that of MDF. MDA, carried out with optimal
values [X, Z]IDF , produces outputs that are slightly dif-
ferent from YIDF . This formulation works faster but is
less robust than MDF.

Figures 10 and 11 present convergence for relative
equality constraints

|Y
∧ − Y ∗(X, Z, Y ∧)

Y ∧ |2 = 0

In figure 10, the initial point satisfies equality con-
straints, and in figure 11, the initial point is a random
point.

In the first case, maximum error is in the order of 0.1,
in the second case, it is less than 0.01.

Convergence is better in the second case. In fact, the
further the point is from a coupled configuration, the
stronger the attraction is to this configuration. This is
due to the quadratic nature of the constraint.

Interdisciplinary coherence is in general reached at
the end of optimization.

Figure 10: Interdisciplinary coherence constraints evo-
lution starting from a reasonable point



Figure 11: Interdisciplinary coherence constraints evo-
lution starting from a random point

3.2.3 IDF sequential

Figure 12: IDF sequential

IDF sequential is shown in figure 12. The best range
of 3505 Nm is reached. MDA, carried out with opti-
mum values [X, Z]IDFS , gives a range of 3500 Nm. It
is more robust than IDF, but it requires twice as many
calls. Model Center computes outputs only if it was not
carried out before. In the one hand, with IDF sequen-
tial, each change in propulsion will invalidate aerody-
namics and structures outputs. In the other hand, with
IDF, propulsion changes will only affect this discipline.

3.2.4 CO

The worst range of 3249 Nm is reached with this
method. This formulation is also very sensitive to op-
timization parameters. The large number of disciplinary
calls is a consequence of the local optimizations. MDA,
carried out with optimum values [X, Z]CO, gives a

range of 3240 Nm If we compare CO outputs with those
obtained with MDA, we observe some differences. CO
is not robust and is time consuming.

Figure 13: CO

To sum up with MDO formulations:

. MDF can be considered as the most reliable.

. IDF is the fastest but lacks of robustness.

. IDF sequential has the best range with a good ro-
bustness, but requires a large number of calls.

. CO does not work well with this test-case.

Conclusion

The SSBJ test case allows us to test and compare MDO
formulations according to their reliability and efficiency.
We have demonstrated techniques which are used to im-
plement them.

Even if this test expresses well the organization of air-
craft design process, it does not represent its complexity.
MDO formulations should be implemented with a more
complex example.

One will have to use reduction model techniques in
order to integrate accurate computer programs in the
global design process.

Individual discipline can also compute its own re-
duced model, where outputs are optimized according to
the private variables X . These concepts can lead bi-level
methods such as CO or DIVE [8] to be more efficient.
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