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Abstract

Optimal flow control problems are often hard to solve directly. One has to face
high dimensionality when numerically simulating the solution in an optimization
loop. A possible way to overcome computational complexity consists in projecting
the state equation onto a relevant reduced basis which is obtained by extracting
controlled state solution features. This methodology was introduced by Graham et
al. [7]. It is called Proper Orthogonal Decomposition Reduced Order Modelling
(POD-ROM) and leads to a simplified optimal control problem. The local accuracy
of the POD-ROM around the generating control (as for quadratic approximations)
leads us to design an iterative optimization algorithm with respect to the previous
limitation. TRPOD algorithm was introduced by Arian et al. [1]. It is based
upon a Trust-Region algorithm and successive Low-Order models, takes into account
the locality property. However, a straight forward application of TRPOD is not
sufficient to reach full convergence to an optimal solution.

We propose an improvement of the method which is based on the following
principles :

• Corrections to the Low-Order model have to be made mainly in the decreasing
direction of the original cost function.

• Former Low-Order models are interacting with the current one through a cou-
pling energy instead of building a single joint model from all the past obser-
vations.

The resulting algorithm is then applied to the cylinder wake flow control problem
in laminar regime. The flow is controlled by an harmonic angular velocity imposed to
the cylinder’s boundary. Numerical results (time computations and optimal control
parameters) are compared to original TRPOD and BFGS approaches.

1 Notations

In this paper, we use a standardized notation, it means :

• Z is a vector of R2 or vector value function.
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2 FLOW CONTROL PROBLEM

• Z is a scalar or scalar value function.

• Hn(Ω) is the set of vector value functions with components is in Hn(Ω).

• (., .) is inner scalar product of L2 or L2, with ||.|| as associated norm.

• ||.||n is usual Rn norm.

2 Flow Control Problem

2.1 Presentation and Governing equations

The physical problem that is introduced in this section deals with flow dynamics past a
cylinder. Intensive investigations in an optimal control framework have been carried out
for this configuration (see [12], [11], [17],[18]) so that explicit comparisons can be made
throughout this article. Indeed, such a physical system happens to be relatively easy to
be analysed or numerically simulated, so that a simple and portable code including both
flow simulator and optimization algorithm can be built up.

The flow is supposed to be incompressible, with velocity denoted by Y . The following
parameters characterize the dynamics :

• The upstream flow velocity and pressure values (Y ∞, P∞).

• Diameter D of the cylinder.

• Reynolds number Re, equal to 200 in this article.

• Frequency of vortex shedding fs, governed by the Strouhal number of the vortex
pattern

St =
fsD

||Y ∞||2

• Aerodynamic coefficients

Cdex + Cley =

∫
Γc

{
P − P∞

1
2
ρ||Y ∞||22

− 2

Re

∂Y

∂n

}
dΓ

where Cd and Cl are respectively the drag coeeficient and the lift one, Γc is the cylin-
der boundary and ∂Y

∂n
the normal partial derivative of Y on the cylinder boundary.

For Re = 200, periodic fluctuations of the flow past the cylinder appear corresponding
to the well known vortex shedding in laminar regime. The predominant frequency is equal
to fs. Flow oscillations lead to an increase of the drag coefficient Cd, compared to steady
flow with the same Reynolds number. The resulting objective consists in reducing Cd by
controlling the vortex shedding. A possible way is to build up an actuator enforced on
the cylinder boundary. The control can be restricted to the following design :

U(t, x) = γ(t)t(x)

where t(x) is the vector tangent at x to the cylinder boundary.
Figure 1 shows how the control acts on the boundary.
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2 FLOW CONTROL PROBLEM 2.1 Presentation and Governing equations

Figure 1: Configuration

The mathematical formulation of the previous problem is made through the introduc-
tion of 2-D unsteady Navier-Stokes equation:


∂tY − 1

Re
∆Y + (Y .∇)Y + ∇P = 0 in Ω × [0, T ]

∇.Y = 0 in Ω × [0, T ]
Y = U on Γc × [0, T ]

Y (t = 0) = Y 0

(Y (t, |x| → +∞), P (t, |x| → +∞) = (Y ∞, P∞)

where Y 0 is a snapshot of the control-free flow.

Since ∇.Y = 0, one has the following equality

(Y .∇)Y = (Y .∇)Y + (∇.Y )Y ≡ ∇.(Y ⊗ Y )

which is used in the next sections to implement the solver. In the sequel (Y .∇)Y is
replaced by the right hand part

∇.(Y ⊗ Y )

For numerical purposes, a bounded domain Ω including the cylinder is defined as
shown in Figure 1. Nevertheless flow behaviour in Ω must remain as close as possible to
the unbounded case. Therefore an inflow boundary condition of is introduced at Γi, Γs

Γl:

Y = Y ∞

An outflow boundary condition of the form

∂nY − Pn = 0

is applied to the right boundary Γo.
The resulting Navier-Stokes equation used for numerical simulation is:
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2.2 Optimal Control Problem formulation 2 FLOW CONTROL PROBLEM

∂tY − 1
Re

∆Y + ∇.(Y ⊗ Y ) + ∇P = 0 in Ω × [0, T ]
∇.Y = 0 in Ω × [0, T ]

Y = Y ∞ on Γi ∪ Γs ∪ Γl × [0, T ]
∂nY − Pn = 0 on Γo × [0, T ]

Y = γ(t)t(x) on ∂Γc × [0, T ]
Y (t = 0) = Y 0 in Ω

(1)

2.2 Optimal Control Problem formulation

Recall that we are interested in reducing the drag coefficient when facing a nonstationary
wake flow behind the cylinder with Re = 200. This can be formulated in terms of
Optimal Control Problem, where the desired angular velocity γ̄ (U = γ̄t) is a solution of
the optimization problem:

γ̄ = argminγJ(γ,Y )

where J is a cost function and (Y , P ) satisfies eq. (1).

Several formulations of J are suggested in the litterature and briefly described by [12].

Drag coefficient minimization.

According to [11],[10], the cost function formulation introduces the drag work through
the viscous dissipation energy and is defined by:

J(γ, Y ) =
2

Re

∫ T

0

∫
Ω

(
1

2
|∇Y + ∇Y T |

)2

dΩdt

where 1
2
(∇Y + ∇Y T ) is the rate of deformation tensor. Minimizing J consists in

finding a rotation γ that would reduce the viscous dissipation energy and therefore the
drag coefficient.

Enstrophy minimization.

Since ω(Y , t) = ∂yY1 − ∂xY2 is the vorticity quantity (where Y = (Y1, Y2)), we define
J as:

J(γ, Y ) =
1

Re

∫ T

0

||ω(Y , t)||2dt

Flow tracking

A desired flow profile without vortices is defined with velocity and pressure fields
(Y d, Pd). The cost function is defined by:

J(γ, Y ) =
1

2

∫ T

0

||Y − Yd||2dt +
β

2
||Y (T ) − Yd(T )||2 (2)

Minimizing J consists in finding γ̄ so that the controlled flow Ȳ is as close as possible to
Y d. The resulting drag coefficient is expected to be reduced relatively to the uncontrolled
one. Choosing the desired flow depends on authors:
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2 FLOW CONTROL PROBLEM 2.3 Cost function Gradient

• [17] suggest to use the corresponding unstable stationary flow for the same Reynolds
number (Red = 200).

• [12] use a flow profile obtained with a low Reynolds number (Red = 2).

In the sequel, flow tracking type cost function is only considered. According to [12]
the best results were reached for such a formulation of J . A discussion about what flow
profile Yd to choose is made in the result section. For Red = 30 (close to the limit Reynolds
number for which instabilities appear) and β = 0 our numerical results are similar to the
ones presented in [11].

Cost function Regularization

As mentioned in [12], dealing with (2) doesn’t ensure the well-posedness of the optimal
control system. Numerically, we observe that a small decrease of the cost function is
associated with a large variation of the control parameter. Therefore the sub-optimal
control obtained numerically is not expected to be a good approximation of the optimal
control.

In order to avoid such a phenomena, a Tikhonov-Arsenin penalization involving the
control parameter is added to the cost function:

J̃(γ,Y ) = J(γ, Y ) + δΠ

Where Π is has the following form:

Π(γ) =
1

2

∫ T

0

γ2(t)dt

The final cost function to be minimized in the sequel is:

J(γ,Y ) =
1

2

∫ T

0

||Y − Yd||2dt +
δ

2

∫ T

0

γ2(t)dt (3)

2.3 Cost function Gradient

Recall that we want to minimize (3) subject to Navier-Stokes equation (1) as state con-
straint.

Basic algorithms for minimizing the functional F (γ) = J(γ,Y γ) (where Y γ is solution
of the previous state equation (1)) are based upon gradient evaluation against direction
γ2:

< ∇F (γ), γ2 >≡
∫ T

0

∇F (γ)γ2dt

We have the following expression:

< ∇F (γ), γ2 >=

∫ T

0

(Y − Y d,Z) dt + δ

∫ T

0

γγ2dt

where Z satisfies
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3 DISCRETIZATION

∂tZ − 1
Re

∆Z + ∇.(Y ⊗ Z) + ∇.(Z ⊗ Y ) + ∇Q = 0 in Ω × [0, T ]
∇.Z = 0 in Ω × [0, T ]

Z = 0 on Γi ∪ Γs ∪ Γl × [0, T ]
∂nZ − Qn = 0 on Γo × [0, T ]

Z = γ2t on Γc × [0, T ]
Z(t = 0) = 0 in Ω

(4)

Equation (4) is linear and forward in time. Moreover the computation of Z at time t
only depends on the previous time values of Y . However, identifying ∇F (γ) would lead
to implement Z in every admissible direction γ2, which could be unfeasible. In order to
have an intrinsic formulation of the gradient, the adjoint formulation is used instead:

∇F (γ) = − (∂nZ − Qn)|Γc

where (Z, Q) satisfies

−∂tZ − 1
Re

∆Z + ∇.(Y ⊗ Z) + ∇.(Z ⊗ Y ) + ∇Q = Y − Y d in Ω × [0, T ]
∇.Z = 0 in Ω × [0, T ]

Z = 0 on Γi ∪ Γs ∪ Γl × [0, T ]
∂nZ − Qn = 0 on Γo × [0, T ]

Z = 0 on Γc × [0, T ]
Z(t = T ) = 0 in Ω

(5)

The adjoint equation is linear and backward in time. Therefore Y has to be first
solved before computing Z.

3 Discretization

3.1 Discretization of the State Equation

3.1.1 Time discretization

Simulating the flow behaviour past a cylinder is relatively simple. Classical mathematical
tools are used for numerically solving the unstationary Navier-Stokes equation including
a control parameter.

We define T as the length of the time window, ∆t the time step and nt = T
∆t

.
A semi-implicit time discretization is considered, linearizing the convection part of

the state equation. For 1 ≤ i ≤ nt − 1, without divergence-free constraint, velocity and
pressure fields are updated according to the following equation:

1
∆t

(
Y i+1 − Y i

)
− 1

Re
∆Y i+1 + ∇.(Y i+1 ⊗ Y i) + ∇P i+1 = 0 in Ω

∇.Y i+1 = 0 in Ω
Y i+1 = Y ∞ on Γi ∪ Γs ∪ Γl

∂nY i+1 − P i+1n = 0 on Γo

Y i+1 = γ ((i + 1)∆t) t on Γc

(6)
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3 DISCRETIZATION 3.1 Discretization of the State Equation

3.1.2 Prediction-Correction method : Presentation

The main issue consists in solving the state equation with respect to the divergence-free
constraint imposed to the state solution. A possible way to overcome this difficulty is
based upon the Hodge decomposition theorem, assessing that every function Y ∗ can be
split according to the following equality :

Y ∗ = Y + ∇θ

where Y is divergence-free and θ a potential function. This leads to

Y = Y ∗ −∇θ (7)

Projection method introduced by Chorin [4] is based upon the previous property and
a prediction-correction strategy. At each timestep, (Y i, P i) is predicted by (Y ∗i, P ∗i)
where the latter doesn’t respect divergence-free constraint. A correction is then applied to
(Y ∗i, P ∗i) by adding the ∇θ part, where θ satisfies the Heat Equation. Since, this strategy
has been developped and improved (e.g [8, 19, 15, 14]). The solver we implemented was
introduced by Bergmann [2] and Braza [13], using a pressure-correction principle.

Prediction.
For 1 ≤ i ≤ N , a prediction Y ∗i+1 of velocity field Y i+1 is computed by solving the
following equation:

1
∆t

(
Y ∗i+1 − Y i

)
− 1

Re
∆Y ∗i+1 + ∇.(Y ∗i+1 ⊗ Y i) + ∇P ∗i+1 = 0 in Ω

Y ∗i+1 = Y ∞ on Γi ∪ Γs ∪ Γl

∂nY ∗i+1 − P ∗i+1n = 0 on Γo

Y ∗i+1 = γit on Γc

(8)

where P ∗i+1 is pressure field prediction, (γi)i is a discret approximation of the rotation
values. As pressure plays the role of a Lagrangian parameter and cannot be explicitely
computed, we simply choose P ∗i+1 = P i.

Heat equation.
In order to update velocity field according to equality (7), we have to find the equation
satisfied by θ. By taking the divergence of (7), one has

∆θ = ∇.Y ∗i+1

By noticing that Y ∗i+1 = Y i+1 on Γi ∪ Γs ∪ Γl ∪ Γc, we obtain

∂θ

∂n
= 0 on Γi ∪ Γs ∪ Γl ∪ Γc

For stability reasons an homogeneous dirichlet boundary condition is enforced on the
right boundary Γo :

θ = 0

Finally, θ is solution to equation:

∆θ = ∇.Y ∗i+1

∂nθ = 0 on Γi ∪ Γs ∪ Γl ∪ Γc

θ = 0 on Γo

(9)
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3.1 Discretization of the State Equation 3 DISCRETIZATION

Correction.
Velocity field is updated using equality (7):

Y i+1 = Y ∗i+1 −∇θ (10)

If Y i+1 is replaced by Y ∗i+1 − ∇θ in (6), and if (8) is substracted to the result, we
obtain

∇P i+1 = ∇P i +
1

∆t
∇θ + ∇.(∇θ ⊗ Y i) − 1

Re
∆∇θ

By neglecting the two last terms, we obtain

P i+1 = P i +
1

∆t
θ (11)

3.1.3 Spatial discretization

Finite Element Method is used for spatial discretization. Variational formulation is ob-
tained for each of the three previous steps of the solver (Prediction, Heat Equation,
Correction). We follow notations and results from Guermond [9] in the sequel.

According to the boundary conditions of equations (8) and (9) , we define

X0 =
{
Y ∈ H1(Ω)|Y |Γi∪Γs∪Γl∪Γc = 0

}
and

N0 =
{
P ∈ H1(Ω)|P|Γo = 0

}
We assume that

∃t̂ ∈ H1(Ω) |t̂|Γc = t(x), t̂|Γi∪Γs∪Γl
= 0, ∂nt̂|Γo = 0

∃Ŷ ∞ ∈ H1(Ω) |Ŷ ∞|Γi∪Γs∪Γl
= Y ∞, Ŷ ∞|Γc = 0, ∂nŶ ∞|Γo = 0

(12)

where we recall that t(x) is the vector tangent at x to the cylinder boundary.

Consider
Ŷ ∗i+1

= Y ∗i+1 − Ŷ ∞ − γit̂

that satisfies

1
∆t

(
Ŷ ∗i+1

− Y i
)
− 1

Re
∆Ŷ ∗i+1

+ ∇.(Ŷ ∗i+1
⊗ Y i) + ∇P ∗i+1 = f in Ω

Ŷ ∗i+1
= 0 on Γi ∪ Γs ∪ Γl ∪ Γc

∂nŶ ∗i+1
− P ∗i+1n = 0 on Γo

(13)

where

f = − 1

∆t

(
Ŷ ∞ + γit̂

)
+

1

Re
∆(γit̂) −∇.((Ŷ ∞ + γit̂) ⊗ Y i) in Ω

Variational formulation of (13).

∀Z ∈ X0, we have
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3 DISCRETIZATION 3.2 Discretized Optimal Control Problem

(
Ŷ ∗i+1

− Y i

∆t
,Z

)
+ a(Ŷ ∗i+1

, Z) + b(Y i, Ŷ ∗i+1
, Z) +

(
∇P ∗i+1,Z

)
= l(Z) (14)

where

l(Z) = − 1
∆t

(
Y ∞ + γit̂, Z

)
− γia(t̂,Z) − b(Y i,Y ∞,Z) − γib(Y i, t̂,Z)

a(Y ,Z) = 1
Re

(∇Y ,∇Z)
b(X,Y ,Z) = ((X.∇)Y , Z) + (∇.X,Y .Z)

Variational formulation of (9).

∀q ∈ N0, (∇θ,∇q) = −
(
∇.Y ∗i+1, q

)
(15)

Variational formulation of (10)-(11).

∀Z ∈ X0,
(
Y i+1, Z

)
= (Y ∗ + ∇θ, Z)

∀q ∈ N0, (∇θ,∇q) = −
(
∇.Y ∗i+1, q

) (16)

Finite element approximation.

In order to be numerically feasible, X0 and N0 have to be replaced by finite dimensional
versions, respectively denoted by X0h ⊂ X0 and N0h ⊂ N0.

Several definitions of (X0h, N0h) are available in the litterature:

• (P1, P1) elements. Piecewise linear functions are used to generate both X0h and
N0h. Unfortunately, this naturel choice leads to pressure oscillations since Inf-Sup
Stability Condition is not verified:

∃β > 0, infQh∈N0,h
supYh∈X0,h

(∇.Yh, Qh) ≥ β||Yh||H1 ||Qh||L2

• (P2, P1) elements. Piecewise quadratic functions and piecewise linear ones are used
to respectively define X0h and N0h. Inf-Sup Stability Condition is verified. However,
this couple of elements is avoided because of heavy computing time cost.

• (P1/bubble, P1) elements. N0h is defined by P1 elements. In order to satisfy Inf-Sup
condition, bubble functions are added to the initial P1-elements basis in order to
define X0h. These elements are used to obtain spatial discretization.

3.2 Discretized Optimal Control Problem

The previous numerical scheme for solving state equation allows us to define a discretized
version of cost function J :

J(γ,Y ) =
1

2

nt∑
i=0

||Y i − Y i
d||2∆t +

δ

2

nt−1∑
i=0

(γi)2∆t (17)

where Y = (Y i)1≤i≤nt.
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3.3 Adjoint Equation 4 LOW ORDER MODELS

3.3 Adjoint Equation

Two ways of computing the gradient of (17) are suggested in the litterature when it is
based on a discret adjoint equation:

• Discretize both in time and space equation (5), with the same method used for
Navier-Stokes equation.

• Compute the adjoint of the discret optimization system : minimize (17) subject to
the discret equations (14)-(16) as state constraint.

The second choice is considered, as the computation of the discret adjoint equation is
straightforward. Analysing equations (14)-(16), one can remark that formally

Y i+1 = AiY i + BiP i + Ci + γiDi

P i+1 = ÃiY i + B̃iP i + C̃i + γiD̃i (18)

The dependancy between (Y i+1, P i+1) and (Y i, P i, γi) is affine.

We define the Lagrangian:

L((γi)i, (Y
i)i, (P

i)i, (Z
i)i, (Q

i)i) =


1
2

∑nt

i=0 ||Y
i − Y i

d||2∆t + δ
2

∑nt−1
i=0 (γi)2∆t

−
∑nt−1

i=0

(
Zi+1, Y i+1 − AiY i − BiP i + Ci − γiDi

)
∆t

−
∑nt−1

i=0

(
Qi+1, P i+1 − ÃiY i − B̃iP i − C̃i − γiD̃i

)
∆t

(19)

Formally taking the derivatives according to Y i, P i and γi, this leads to the adjoint
equations (20) and the cost function gradient (21)

Zi = (Ai)T Zi+1 + (Ãi)T Qi+1 + (Y i − Y i
d)

Znt = 0

Qi = (Bi)T Zi+1 + (B̃i)T Qi+1

Qnt = 0

(20)

where (X)T denotes the adjoint operator of X, and

(∇F (γ))i = δγi + (Di)T Zi+1 + (D̃i)T Qi+1 (21)

4 Low Order Models

Optimization problems involving an equality constraint can be usually solved by two
classes of algorithm, either deterministic algorithms, where at least a gradient information
is needed in order to compute a descent direction, or stochastic algorithms such as genetic
ones or simulated annealing for instance. In the case the cost function depends on a
parameter that controls the behaviour of a PDE as equality constraint, the optimization
problem discretization leads to the design of a large scale system. When an iterative
optimization algorithm is defined, the PDE solution is repeatedly simulated. Therefore
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4 LOW ORDER MODELS 4.1 Proper Orthogonal Decomposition (POD)

time cost for solving the optimization problem becomes prohibitive, especially when real-
time computation is required. A way to overcome the dimensional effect consists in setting
up a Reduced Order Model of the controlled state equation, where the approximate state
solution can be expressed in a low dimensional space. In the sequel, a reduced basis
approach is considered and has to be found, on to which a Petrov-Galerkin Method would
be made possible.

Several methods are available in the litterature for finding such a reduced basis, either
by choosing a prior fixed one or by iteratively extracting it. In the first case, it can
be choosen between Lagrange, Krylov, Hermite ones. In the latter case, the Proper
Orthogonal Decomposition introduced by Lumley and used in an iterative sense by [1] is
an example, and is considered in the next sections.

4.1 Proper Orthogonal Decomposition (POD)

4.1.1 Presentation

The POD approach was first developped by [3] in order to analyze unstationary turbulent
flows, through extraction of key features. A set of vectors is obtained from flow snap-
shots, concentrating relevant information of the turbulent behaviour. In a more general
framework, POD is also known as Principal Component Analysis or Karhunen Loeve
Decomposition. The extraction is based on either the continuous in time flow velocity
field or a set of discrete in time values of velocity field (called snapshots). The latter is
considered for our POD decomposition.

Let’s denote by Y m the mean of the velocity snapshots {Y i, 1 ≤ i ≤ nt}:

Y m =
1

nt

∑
i

Y i

Considering Ŷ
i

= Y i − Y m and r = dim(Ŷ
1
, ..., Ŷ

nt
), the POD orthonormal basis

(ψi)1≤i≤r is solution to the following iterative optimization problem:

∀i ∈ {1...r},ψi = argmax||ψ||=1

nt∑
i=1

(
ψ, Ŷ

i
)2

, ψ⊥{ψ1...ψi−1} (22)

where we recall that (., .) is the L2(Ω) scalar product and ||.|| the corresponding norm.

Considering

Γ : L2(Ω) −→ L2(Ω)

ψ −→
∑nt

i=1

(
Ŷ i,ψ

)
Ŷ i

Problem (22) is equivalent to:

ψi = argmaxψ (Γ(ψ),ψ) , ||ψ|| = 1,ψ ⊥{ψ1...ψi−1}

Taking the Lagrangian

L(ψ, l) = (Γ(ψ),ψ) + l(||ψ||2 − 1)
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4.1 Proper Orthogonal Decomposition (POD) 4 LOW ORDER MODELS

the first order optimality condition is

∀φ⊥{ψ1...ψi−1},
(
Γψi,φ

)
= l

(
ψi,φ

)
(23)

As Γ is a positive self adjoint Hilbert-Schmidt operator, it can be written in the form

Γ =
r∑

i=1

li (ei, .) ei

where l1 ≥ l2 ≥ ... ≥ lr > 0 and (ei, ej) = δij.

Using (23) we can then iteratively prove that ψi ≡ ei, with
(
Γ(ψi),ψi

)
= li.

The relative information contained by the m first elements of the POD basis is defined
by

I(m) =

∑m
i=1 li∑r
i=1 li

Finally, given a truncation parameter p, a reduced basis {ψ1, ..., ψnp} is selected where
np = min{j|I(j) ≥ p}.

4.1.2 Implementation

Numerically, computing the eigenvectors of Γ would lead to the diagonalization of square

matrix
∑r

i=1 Ŷ
i
(Ŷ

i
)T M . This diagonalization becomes unfeasible when facing a large

scale discrete system. In order to avoid this difficulty, the Singular Value Decomposition
needs to be applied to a reasonnably sized square matrix. Let’s introduce

Γ̃ : Rnt −→ Rnt

(αi)1≤i≤nt −→
(∑nt

j=1 αj

(
Ŷ

i
, Ŷ

j
))

1≤i≤nt

where Γ̃ is a positive self-adjoint Hilbert-Schmidt operator. If (l̃i)i is the decreasing
sequence of Γ̃ eigenvalues, we have

∀i ∈ {1...r}, li > 0 ⇒ l̃i = li

Strictly positive eigenvectors of Γ can be retrieved thanks to the following equality:

ψi =
1√
li

nt∑
j=1

ψ̃i(j)Ŷ
j

(24)

where (ψi(j))j is an eigenvector of Γ̃ with eigenvalue l̃i = li.

Usually nt << n + m (recall that n,m are the number of P1 and bubble elements).
Therefore, one would prefer to use Γ̃ instead of Γ and would find the POD basis in three
steps:

• Diagonalizing
(
Ŷ

i
, Ŷ

j
)

1≤i,j≤nt

.

IVK,ULB,EUCASS - 12 - 2/6 July 2007



4 LOW ORDER MODELS 4.2 Reduced Order Model (POD-ROM)

• Retrieving the POD basis thanks to formula (24).

• Selecting the first np POD elements according to the truncation criteria p.

Figure 2 illustrates the first POD elements obtained for control-free flow at Re = 200.
We observer that the relevant features of vortex shedding past the cylinder is captured
by the first POD elements.

Figure 2: First POD functions

4.2 Reduced Order Model (POD-ROM)

The POD basis was first considered as a descriptive tool for turbulent flows. Since, it is
used to generate a low order prediction model (also called POD-ROM) of the velocity field
Y . This prediction model is expected to fulfill both computational cost reduction and
satisfactory approximation of Y requirements. In the sequel, velocity prediction using
POD-ROM is denoted by Y p.
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4.2 Reduced Order Model (POD-ROM) 4 LOW ORDER MODELS

4.2.1 Prediction in the control free case.

In control free case, prediction is obtained through a Galerkin projection of (1) onto the
POD basis.

Recall that ψi is expressed as a linear combination of the modified snapshots (Ŷ
i
)1≤i≤nt.

Consequently,

ψi = 0 on Γi ∪ Γs ∪ Γl ∪ Γc

∇.ψi = 0

Define the velocity approximation by

Y p =

np∑
j=1

Y p
j ψj + Y m

As a prediction, Y p must satisfy (1).
Therefore, for every ψi,(

ψi, ∂tY
p − 1

Re
∆Y p + ∇.(Y p ⊗ Y p) + ∇P

)
= 0

Since

1
Re

(
ψi, ∆Y p

)
= 1

Re

(
∇ψi,∇Y p

)
− 1

Re

∫
Γi,s,l,o,c

(
ψi, ∂nY p

)
2
dΓ

= 1
Re

(
∇ψi,∇Y p

)
− 1

Re

∫
Γo

(
ψi, ∂nY p

)
2
dΓ(

ψi,∇P
)

= −
(
∇.ψi, P

)
+

∫
Γi,s,l,o,c

(ψi, Pn)2dΓ

=
∫

Γo
(ψi, Pn)2dΓ

∇.(Y p ⊗ Y p) = (Y p.∇)Y p

then

1
Re

(
ψi, ∆Y p

)
+

(
ψi,∇P

)
= 1

Re

(
∇ψi,∇Y p

)
− 1

Re

∫
Γo

(
ψi, ∂nY p

)
2
dΓ +

∫
Γo

(ψi, Pn)2dΓ

= 1
Re

(
∇ψi,∇Y p

)
Finally,

(
ψi, ∂tY

p + (Y p.∇)Y p)
)

+ 1
Re

(
∇ψi,∇Y p

)
= 0

In coefficient form:

dY p
i

dt
= ai +

np∑
j=1

bijY
p
j +

np∑
j=1

np∑
k=1

cijkY
p
j Y p

k (25)

where

ai = −
(
ψi, (Y m.∇)Y m

)
− 1

Re

(
∇ψi,∇Y m

)
bij = −

(
ψi, (Y m.∇)ψj

)
−

(
ψi, (ψj.∇)Y m

)
− 1

Re

(
∇ψi,∇ψj

)
cijk = −

(
ψi, (ψj.∇)ψk

)
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4 LOW ORDER MODELS 4.2 Reduced Order Model (POD-ROM)

4.2.2 Prediction in the controlled case.

Two predictions models were suggested by [7] in the controlled case:

• Control Function Method. The controlled part of the velocity field is predicted
through a particular function denoted by Y c. It is computed before the optimization
system. The velocity approximation is simply

Y p
γ =

np∑
j=1

Y p
j ψj + Y m + γY c

Snapshots are modified according to equality

Ŷ
i
= Y i − Y m − γY c

where γ is the cylinder rotation used to compute {Y i, 1 ≤ i ≤ nt} and Y m =
1
nt

∑
i Y

i. POD basis (ψi)1≤i≤r obtained from the previous snapshots satisfies

ψi = 0 on Γi ∪ Γs ∪ Γl ∪ Γc

∇.ψi = 0

The Galerkin projection leads to a formulation similar to (25):

dY p
i

dt
= ai +

np∑
j=1

bijY
p
j +

np∑
j=1

np∑
k=1

cijkY
p
j Y p

k + di
dγ

dt
+

(
ei +

np∑
i=1

fij

)
γ + giγ

2 (26)

where

di = −(ψi,Y c)
ei = −

(
ψi, (Y m.∇)Y c

)
−

(
ψi, (Y c.∇)Y m

)
− 1

Re

(
∇ψi,∇Y c

)
fij = −

(
ψi, (ψj.∇)Y c

)
−

(
ψi, (Y c.∇)ψj

)
gi = −

(
ψi, (Y c.∇)Y c

)
• Penalty Method. The original method for computing the POD basis is kept. The

velocity approximation is

Y p =

np∑
j=1

Y p
j ψj + Y m

A penalized Robin boundary condition is enforced on the cylinder boundary in order
to introduce the rotation γ in the variational formulation:

∂tY
p − 1

Re
∆Y p + ∇.(Y p ⊗ Y p) + ∇P = 0 in Ω × [0, T ]

∇.Y p = 0 in Ω × [0, T ]
Y p = Y ∞ on Γi ∪ Γs ∪ Γl × [0, T ]

∂nY p − Pn = 0 on Γo × [0, T ]
ε∂nY p + Y p = γt on Γc × [0, T ]

Y p(t = 0) = Y 0 in Ω

(27)
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4.2 Reduced Order Model (POD-ROM) 4 LOW ORDER MODELS

For every ψi, (
ψi, ∂tY

p − 1

Re
∆Y p + ∇.(Y p ⊗ Y p) + ∇P

)
= 0

Since

ψi = 0 on Γi ∪ Γs ∪ Γl

∇.ψi = 0
ψi(t, x) = gi(t, x)t(x) on Γc

we have

1
Re

(
ψi, ∆Y p

)
= 1

Re

(
∇ψi,∇Y p

)
− 1

Re

∫
Γi,s,l,o,c

(
ψi, ∂nY p

)
2
dΓ

= 1
Re

(
∇ψi,∇Y p

)
− 1

Re

∫
Γo

(
ψi, ∂nY p

)
2
dΓ − 1

Re

∫
Γc

(
ψi, γt−Y p

ε

)
2
dΓ(

ψi,∇P
)

= −
(
∇.ψi, P

)
+

∫
Γi,s,l,o,c

(ψi, Pn)2dΓ

=
∫
Γo

(ψi, Pn)2dΓ +
∫

Γc
(git, Pn)2dΓ

=
∫
Γo

(ψi, Pn)2dΓ

∇.(Y p ⊗ Y p) = (Y p.∇)Y p

Therefore

1

Re

(
ψi, ∆Y p

)
+

(
ψi,∇P

)
=

1

Re

(
∇ψi,∇Y p

)
− 1

Re

∫
Γc

(
ψi,

γt − Y p

ε

)
2

dΓ

Finally,

(
ψi, ∂tY

p + (Y p.∇)Y p)
)

+ 1
Re

(
∇ψi,∇Y p

)
− 1

Re

∫
Γc

(
ψi, γt−Y p

ε

)
2
dΓ = 0

In coefficient format:

dY p
i

dt
= ai +

np∑
j=1

bijY
p
j +

np∑
j=1

np∑
k=1

cijkY
p
j Y p

k + diγ

where

ai = −
(
ψi, (Y m.∇)Y m

)
− 1

Re

(
∇ψi,∇Y m

)
− 1

εRe

∫
Γc

(ψi,Y m)2dΓ

bij = −
(
ψi, (Y m.∇)ψj

)
−

(
ψi, (ψj.∇)Y m

)
− 1

Re

(
∇ψi,∇ψj

)
− 1

εRe

∫
Γc

(ψi,ψj)2dΓ

cijk = −
(
ψi, (ψj.∇)ψk

)
di = 1

εRe

∫
Γc

(ψi, t)2dΓ

In matrix format,

dY p

dt
= A + BY p + (C : Y p)Y p + Dγ (28)

where

Y p(t) = (Y p
i (t))1≤i≤np
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4 LOW ORDER MODELS 4.3 Reduced Optimal Control Problem

For adjoint equation computation simplicity, tensor C = (cijk)ijk is replaced by
C̃ = (1

2
(cijk + cikj))ijk in order to have the following symmetry:

∀Y, Z, (C̃ : Y )Z = (C̃ : Z)Y

(C̃ : Y )Y = (C : Y )Y

For clarity reasons, C̃ is simply denoted by C.

When admissible controls acting on the cylinder boundary are not restricted to ro-
tations, the formulation of Control Function Method increases in complexity. We have
to introduce a family of {Y c} in order to eliminate the control part of Y and obtain an
homogeneous Dirichlet boundary condition on Γc. Motivated by the generalization of our
algorithm, the Penalty Method is only considered in the sequel.

4.3 Reduced Optimal Control Problem

4.3.1 Formulation

In this section, a reduced model of the optimal control problem is suggested, using POD-
ROM model. The matrix representation for the reduced POD-basis is Γ = (ψ1, ..., ψnp),
satisfying

ΓT MΓ = I

where I is the identity matrix.

Recall that

Y p(t) =

np∑
j=1

Y p
j (t)ψj + Y m = ΓY p(t) + Y m

Assuming that Y is replaced by his POD-ROM prediction, the Reduced Optimal
Control problem takes the following form:

Minimize

J(γ, Y p) = 1
2

∫ T

0
||Y p − Y d||2dt + δ

2

∫ T

0
(γ)2

= 1
2

∫ T

0
||ΓY p + Y m − Y d||2dt + δ

2

∫ T

0
(γ)2

where Y p is solution of (28).

4.3.2 Discretization and Gradient computation

Discretization.
A semi-implicit scheme is used for time discretization of POD-ROM state equation. For
1 ≤ i ≤ nt − 1,

Y p,i+1 − Y p,i

∆t
= A + BY p,i+1 + (C : Y p,i)Y p,i+1 + Dγi (29)

The discretized version of the cost function is

J(γ, Y p) =
1

2

T∑
0

||ΓY p + Y m − Y d||2 +
δ

2

T∑
0

||γ||2
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4.3 Reduced Optimal Control Problem 4 LOW ORDER MODELS

where∑T
0 ||ΓY p − Y d|| =

√∑nt−1
i=0 (ΓY p,i + Y m − Y i

d)
T M(ΓY p,i + Y m − Y i

d)∆t∑T
0 ||γ|| =

√∑nt−1
i=0 (γi)2∆t

and Y p is solution to (29).

Gradient computation.
Adjoint equation of the discretized POD-ROM state equation is solved in order to compute
the reduced cost function gradient. Let’s introduce the Lagrangian

L(Y p, γ, Zp) = J(γ, Y p)−
nt−1∑
i=0

(Zp,i+1)T

(
Y p,i+1 − Y p,i

∆t
− A − BY p,i+1 − (C : Y p,i)Y p,i+1 − Dγi

)

First order optimality conditions for L leads to

∂Y L = 0

∂γL = 0

∂ZL = 0

The adjoint equation is obtained from ∂Y L = 0:

Zp,i−Zp,i+1

∆t
= BT Zp,i + (C : Y p,i−1)T Zp,i + (C : Y p,i+1)T Zp,i+1 + Y p,i + ΓT M(Y m − Y d)

Zp,nt = 0
(30)

As Y p is controlled by γ (and written Y p
γ ), the cost function depends only on the γ

parameter. If F p is introduced, where

F p(γ) = J(γ, Y p
γ )

we have

(∇γF
p)i = δγi + DT Zp,i+1 (31)

by using optimality condition ∂γL = 0.

Computation of F p value and gradient is based upon three steps:

• Compute Y p thanks to (28).

• Compute Zp thanks to (30).

• Compute ∇F p thanks to (31).
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5 TRUST REGION OPTIMIZATION

5 Trust Region Optimization

5.1 Trust Region-POD ([1])

Trust-Region methods are iterative optimization algorithms. The key idea consists in
replacing the cost function by successive quadratic approximations and in optimizing
within a small region that takes into account the locality of these approximations. Outline
of such algorithms is presented below, where f(x) has to be minimized. Let us choose
parameters ν1, ν2, κ1, κ2, κ3 so that 0 < ν2 < ν1 < 1, 0 < κ3 ≤ κ2 < 1 ≤ κ1:

Here is the schedule of an iteration :

1. Consider from the previous step the current Trust Region radius ρk, the current
state xk, and fk(x) = f(xk) + ∇f(xk)

T (x − xk) + 1
2
(x − xk)

T∇2f(xk)(x − xk).

2. Solve the optimization problem x̃ = argmin fk(x) with ||x − xk|| ≤ ρk.

3. Compute f(x̃) and define

λ =
f(xk) − f(x̃)

fk(xk) − fk(x̃)

4. Update the trust region radius:

• If ν1 ≤ λ set xk+1 = x̃ and increase the trust region radius ρk+1 = κ1ρk.
Consider the next step k + 1 and goto 1.

• If ν2 ≤ λ ≤ ν1 set xk+1 = x̃ and decrease the trust region radius ρk+1 = κ2ρk.
Consider the next step k + 1 and goto 1.

• If λ ≤ ν2 set xk+1 = xk and decrease the trust region radius ρk+1 = κ3ρk.
Consider the next step k + 1 and goto 2.

When f is replaced by an optimal control system a POD-ROM approach is substituted
to the successive quadratic functions, leading to the Trust Region Proper Orthogonal
Decomposition method (TRPOD) introduced by [1]. Reduced model is updated at each
iteration and embedded in a Trust-Region framework, in order to ensure the convergence
of the algorithm regarding the way POD-ROM is built up.

Recall the initial discretized optimal control problem:

Minimize

J(γ,Y ) =
1

2

T∑
0

||Y − Y d||2 +
δ

2

T∑
0

||γ||2

subject to the discretized state constraint system defined for Navier Stokes equation,
and written in a more compact form Y = Y γ.

Recall that

F (γ) = J(γ, Y γ)
F p(γ) = J(γ, Y p

γ)
(32)

We follow the outline presented in [1] concerning TRPOD :
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5.1 Trust Region-POD ([1]) 5 TRUST REGION OPTIMIZATION

1. Consider γk the current rotation and ρk the trust region radius.

2. Compute Y γk
and the corresponding snapshot set {Y 1

γk
, ..., Y nt

γk
}

3. Compute POD-ROM and reduced cost function∗ F p.

4. Step Determination Algorithm: Solve the optimization problem

sk = argmin F p(γk + s),

with ||s|| ≤ ρk.

5. Compute F (γk + sk) and define

λ =
F (γk) − F (γk + sk)

F p(γk) − F p(γk + sk)

6. Update the trust region radius:

• If ν1 ≤ λ set γk+1 = γk + sk and increase the trust region radius ρk+1 = κ1ρk.
Consider the next step k + 1 and goto 1.

• If ν2 ≤ λ ≤ ν1 set γk+1 = γk + sk and decrease the trust region radius ρk+1 =
κ2ρk. Consider the next step k + 1 and goto 1.

• If λ ≤ ν2 set γk+1 = γk and decrease the trust region radius ρk+1 = κ3ρk.
Consider the next step k + 1 and goto 4.

Fletcher-Reeves algorithm and Armijo Rule are both used for computing the solution
at step 4:

1. Compute ∇F p(γk), define s0
k = 0 and h0 = ∇F p(γk).

2. for i = 1, ..., n − 1 do

3. Replace si−1
k by si

k where si
k = si−1

k + λi−1hi−1 and λi−1 agrees with Armijo Rule.

4. If i < n, set

hi = −∇F p(γk + si
k) +

∑T
0 ||∇F p(γk + si

k)||2∑T
0 ||∇F p(γk + si−1

k )||2
hi−1

∗The reduced cost function definition depends undirectly on the control γk that generated the POD
basis
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5 TRUST REGION OPTIMIZATION 5.2 Coupled Reduced Order Models

5.2 Coupled Reduced Order Models

Numerical results obtained in a TRPOD framework show problems of convergence when γk

is close to an optimum. Prevailing errors that prevent the algorithm from fully converging
are those introduced by POD-ROM approximation. In such case, Trust-Region radius
sharply decreases, leading to unsuccessful iterations and an increase of computation time
cost.

Coupling POD-ROMs would allow to overcome accuracy problems by taking into
account test points used within an optimization loop. Moreover, the method is numerically
built up with negligible extra cost.

Given 2 simulated velocity fields

(γ1,Y 1), (γ2,Y 2)

One can extract 2 snapshots sets {(Y 1i)1≤i≤nt} and {(Y 2i)1≤i≤nt}. Reduced models
can be obtained through 2 ways:

• Either by merging the 2 sets. A unique POD basis is extracted and thus a single
POD-ROM Y p

γ.

• Either by leaving the 2 sets apart, generating 2 POD-ROMs Y p1
γ and Y p2

γ .

Numerically, we observe problems of accuracy by considering the single POD-ROM.

Recall that

J(γ,Y ) =
1

2

T∑
0

||Y − Y d||2 +
δ

2

T∑
0

||γ||2

Thus

J(γ, Y ) = 1
2

∑T
0 ||Y − Y p||2 + 1

2

∑T
0 ||Y p − Y d||2

+
∑T

0 (Y − Y p,Y p − Y d) + δ
2

∑T
0 ||γ||2

Usually, ||Y −Y p||2 and (Y − Y p,Y p − Y d) are expected to be negligible, according
to Galerkin projection assumptions.

Assume that 2 POD-ROMs γ → Y p1 and γ → Y p2 were computed. Then,

J(γ, Y ) = 1
4

∑T
0 ||Y p1 − Y p2||2 + 1

2

(
J(γ, Y p1) + J(γ, Y p2)

)
+1

2

∑T
0

(
Y − Y p1,Y − Y p2

)
+1

2

∑T
0

(
Y − Y p1,Y p1 − Y d

)
+1

2

∑T
0

(
Y − Y p2,Y p2 − Y d

)
The two last terms are not taken into account. Therefore

J(γ, Y ) = 1
4

∑T
0 ||Y p1 − Y p2||2 + 1

2

(
J(γ, Y p1) + J(γ, Y p2)

)
+1

2

∑T
0

(
Y − Y p1,Y − Y p2

)
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Given γ, Y (γ) si replaced by its estimation

Ỹ (γ) = θ̄Y p1(γ) + (1 − θ̄)Y p2(γ) (33)

where θ̄ is solution to Min R(θ, Z) =
∑T

0 ||θY p1(γ) + (1 − θ)Y p2(γ) − Z||2
θ ∈ [0, 1]
Z ∈ span(Y 1, Y 2)

(34)

This optimal parameter θ can be understood as a will to choose the reduced model
that deviates as less as possible to the velocity fields that generated the two POD-ROMS.

Finally, the reduced cost function F p is

1

2

{
1

2

T∑
0

||Y p1 − Y p2||2 +
(
F p1 + F p2

)
+

T∑
0

(
Ỹ − Y p1, Ỹ − Y p2

)}

5.3 Multiobjective optimization

Around a local minimizer of F , problems of convergence is numerically observed. [5]
have introduced a POD-ROM model of the adjoint equation in order to have a better
approximation of the cost function and its local behaviour. Instead, we propose to simply
use ∇F inside an optimization loop of TRPOD in accordance with the following remarks
:

• The gradient norm of F is high when far from a local minimizer. It’s possible to
deviate from the steepest descent direction to obtain a minimum inside the trust-
region.

• The gradient norm of F is low when close to a local minimizer. It’s preferable to
search a minimizer along the steepest descent direction inside the trust region.

A basic approach would consist in introducing the gradient information as a direction
constraint for searching a minimum inside an optimization loop of TRPOD algorithm.
The resulting problem would be

{
sk = argmin‖s‖≤ρk

F p(γk + s)
∇F (γk).s ≤ 0

However the gradient norm information is not available and the previous strategy
cannot be implemented straightforward. Let’s introduce the first order approximation of
F , denoted by F 2 which is defined by

F 2(γ) = F (γk) + ∇Fγk
.(γ − γk)

Considering F 1(s) = F p(γk + s) as a low order approximation of F around γk, we say
that s is admissible if

{
F 1(s) − F 1(0) ≤ 0
F 2(s) − F 2(0) ≤ 0
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Define F = (F 1, F 2). s1 is said to be better than s2 if F (s1) ≤ F (s2), that is

{
F 1(s1) − F 1(s2) ≤ 0
F 2(s1) − F 2(s2) ≤ 0

Instead of minimizing F 1, we seek for a Pareto optimal point sk of F , according to
the next definition.

Definition.
A point s̃ is said to be Pareto optimal if and only if there is no s such that F (s) ≤ F (s̃)
with at least one strict inequality: F 1(s) < F 1(s̃) or F 2(s) < F 2(s̃).

Pareto front is the set K of Pareto optimal points.

In order to reach the Pareto front, an admissible descent direction has to be redefined
for multiobjective optimization.

Definition.

Define α ∈]0, 1[. d is said to be an admissible descent direction or agrees with Armijo
rule if

∃t > 0,F (td) ≤ F (0) + αtJF (0)d

where JF (0) is the Jacobian of F at 0.
In the scalar case, the steepest descent is admissible. In the vector case, steepest

descent needs to be redefined.
[6] suggested to use the following definition :

Definition.
Steepest descent of F is defined by normalized vector v solution to optimization problem

Minv Maxi=1,2

(
v,∇F i

)
+

1

2
||v||2

and agrees with Armijo Rule.
We introduce in the sequel ∇2F ≡ −v.

This steepest direction agrees with the previous remarks. Assume that (∇F 2,∇F 1) ≥
0:

• When ||∇F 2|| tends to 0 (for instance close to an optimum), ∇2F = ∇F 2. The
steepest descent of F is selected. Therefore optimization using POD-ROM is not
relevant.

• When ||∇F 2|| is sufficiently large, ∇2F = ∇F 1. The steepest direction ∇F 2 is not a
key direction for optimization. Therefore optimization using POD-ROM is relevant.

5.4 Algorithm

The final algorithm uses the two improvments described in the previous section. Instead
of finding point γk+1 that minimizes F p, a Pareto optimal point of F is computed inside
an optimization loop. Moreover, depending on the correlation criteria value introduced
in TRPOD, either a single POD-ROM model or a coupled one is considered. Recall that
minimizing a vector cost function consists in finding an optimal Pareto point.

First define the following useful parameters :
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• Correlation criteriae: 0 < ν2 < ν1 < 1.

• Trust-Region radius parameters: 0κ3 ≤ κ2 < 1 ≤ κ1.

• Coupling boolean coupling ∈ {0, 1}.

1. Compute Y γk
from γk and ∇F (γk). Define POD-ROM Y p1

γ and F 2(s) = F (0) +
∇Fγk

.s.

2. Consider F :

• If coupling = 0, F 1(s) = F p1(γk + s) where F p1(γ) = J(γ, Y p1
γ ).

• If coupling = 1, F 1(s) = F p(γk + s) where

F p(γ) = 1
2

{
1
2

∑T
0 ||Y p1

γ − Y p2
γ ||2 + (F p1(γ) + F p2(γ)) +

∑T
0

(
Ỹ − Y p1, Ỹ − Y p2

)}
F p1(γ) = J(γ, Y p1

γ )
F p2(γ) = J(γ, Y p2

γ )

(35)

and Ỹ computed according to (33).

3. Solve optimization problem :

sk = argmin‖s‖≤δk
F (s)

where F = (F 1, F 2).

4. Compute F (γk + sk) and

λ =
F (γk) − F (γk + sk)

F 1(0) − F 1(sk)

5. Update Trust-Region radius and POD-ROM :

• If ν1 ≤ λ, γk+1 = γk + sk and δk+1 = κ3δk. Set Y p2 = Y p1, couplage = 1.
Consider the next step k + 1 and goto 1.

• If ν2 ≤ λ < ν1, γk+1 = γk + sk and δk+1 = κ2δk. Set couplage = 0. Consider
the next step k + 1 and goto 1.

• If λ < ν2, γk+1 = γk and δk+1 = κ1δk. Compute POD-ROM Y p2
γ from Y γk+sk

and set couplage = 1. Consider the next step k + 1 and goto 2.

Fletcher-Reeves algorithm and Armijo Rule in vector case are both used for computing
the solution at step 3:

1. Compute ∇2F (0), define s0
k = 0 and h0 = ∇2F (0).

2. for i = 1, ..., n − 1 do

3. Replace si−1
k by si

k where si
k = si−1

k + λi−1hi−1 and λi−1 agrees with Armijo Rule.

4. If i < n, set

hi = −∇2F (si
k) +

∑T
0 ||∇2F (si

k)||2∑T
0 ||∇2F (si−1

k )||2
hi−1
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6 Numerical Results

6.1 Configuration

The configuration presented below is used for numerical computations. The cylinder
has diameter D equal to 1, and is 10 units far from the left (inflow), upper and lower
boundaries of domain Ω.

Figure 3: Configuration

We recall that :

• A Dirichlet boundary condition of the form Y = Y ∞ is enforced on the left, upper
and lower boundaries.

• An outflow boundary condition ∂nY − pn = 0 is used at the right boundary.

• On the cylinder boundary, we have Y = γt

An unstructured mesh of size 7000 is built up, with refinements around the cylinder
and in its wake.

6.2 Validation of the Solver

The correctness of optimization results sharply depends on both configuration and solver
accuracy. Therefore, as a preliminary to optimization numerical results, a validation of
our solver is made for sevral Reynolds numbers ranging from 10 to 200.

For Reynolds number values below 40, a symmetric steady flow is observed. A recir-
culating zone appears in the wake of the cylinder, with length positively correlated to Re,
as shown in Figure 4

For Re above a critical value around 40, the control free flow becomes unsteady,
although unconditionally stable. As shown in fig. 5, the symmetry is broken and a well-
known Von-Karman vortex street appears behind the cylinder, with periodicity defined
by St.
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Figure 4: Control free flow

Figure 5: Flow lines for low Reynols number
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Numerically, when taking as initial value the corresponding unstable steady flow, a
sharp increase of the drag coefficient is first observed during the transient regime as shown
in fig. 6.
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Figure 6: Evolution of Drag and Lift coefficients

At a stage a stable periodic regime appears for Cd and Cl with their values stabilizing
around a mean one constant in time. When analysing the power spectrum of Cd and
Cl, their oscillations are governed by a predominant fundamental frequency, namely fs

for Cl through which St is easily computed. Figure 7 shows the behaviour of Cd and Cl

for Re = 200 during the periodic regime. Cd and Cl oscillate around their mean value,
respectively C̄d = 1.3682 and C̄l = 0.0047 where

C̄dex + C̄ley =
1

T

∫ T

0

∫
Γc

{
P − P∞

1
2
ρ||Y ∞||22

− 2

Re

∂Y

∂n

}
dΓdt

The power spectrum of Cl leads to St = 0.2000.
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Figure 7: Control free flow and controlled one

As presented before, steady flows become unstable for Re > 40. They can be computed
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as stationary solution of the Navier-Stokes equation. Nevertheless characteristics of such
flows are worth being mentioned, as they show :

• A low drag coefficient Cd compared to the unsteady flow computed for the same
Reynolds number (cf. fig. 8)

• A desired profile with low vorticity values.
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Figure 8: Drag coefficient for steady and unsteady flows

Datas numerically computed by several authors are summarized in Tables 1, 2 and in
Figure 9 for various Reynolds number values, ranging from 20 to 200.

Table 1: Drag coefficient values

Re Present Work Bergmann et al. He et al. Braza et al. Henderson

20 2.1779 2.2500 2.0064 2.1900 2.0587
40 1.6154 1.6800 1.5047 1.5800 1.5445
60 1.4695 - 1.3859 1.3500 1.4151
80 1.4150 - 1.3489 - 1.3727
100 1.3846 1.4100 1.3528 1.3600 1.3500
200 1.3682 1.3900 1.3560 1.3900 1.3412

Table 2: Drag coefficient values

Re Present Work Bergmann et al. He et al. Braza et al. Henderson

60 0.1400 - 0.1353 - 0.1379
80 0.1570 - 0.1526 - 0.1547
100 0.1670 0.1670 0.1670 0.1600 0.1664
200 0.2000 0.1990 0.1978 0.2000 0.1971

For low values of Reynolds number (Re < 100), Strouhal number computed through
our method seems to be slightly overpredicted. However, for our typical configuration
where Re = 200, good numerical values are computed, close to the ones presented above.
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Figure 9: Comparison between several solvers

6.3 Results obtained with BFGS Algorithm (He et al.)

6.3.1 Presentation

In order to validate the results obtained by our algorithm, BFGS method is used as
reference for result comparisons. The mesh size of our configuration is low enough to use
a simple implementation of BFGS algorithm instead of a limited memory one suggested
by [16], when facing large scale optimization.

Here is the short presentation of BFGS method that is given in [11] for BFGS method
description, where f is defined on RN and g(x) = ∇f(x).

• Initialization. Choose 0 < α < 1
2
, α < β < 1, x0, H0 ∈ L(RN , RN) and g0 =

∇f(0).

• Optimization loop.

1. Compute dk = −Hkgk, xk+1 = xk + ρkdk where ρk is choosen according to the
following conditions :{

f(xk + ρkdk) ≤ f(xk) + αρk(gk, dk)
(g(xk + ρkdk), dk) ≥ β(gk, dk)

2. Update Hk thanks tho the following formula

sk = xk+1 − xk

yk = gk+1 − gk

Hk+1 = Hk + (sk−Hkyk)⊗sk+sk⊗(sk−Hkyk)
(yk,sk)

− (sk−Hkyk,yk)
(yk,sk)2

sk ⊗ sk

where u ⊗ v is the usual tensor product.

In our case, we have

x ∈ {(A, f, φ), A ∈ R+, f ∈ R+, φ ∈ [0, 2π]} ⊂ R3

and

f(x) ≡ F (γx) =
1

2

∫ T

0

||Y γx − Y d||2dt +
10−3

2

∫ T

0

γ2
x(t)dt

where

γx = x1sin(2πx2t + x3)

We recall that Y d is an unforced steady flow computed for Red ≤ Re.
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6.3.2 Computation of the desired profile Y d

For clarity reasons, let’s denote by

• NSC(Y , P, γ) = 0 the compact form of state equation.

• NSS(Y d, Pd, Red) = 0 the stationary state equation satisfied by Y d.

• J(Y , γ, Y d, Red) = 1
2
||Y − Y d||2 + 10−3

2
||γ||2.

Numerical results obtained for flow tracking cost function type is quite sensitive to Y d

(and the corresponding Red). Let’s consider the following cost function :

Red →


Minγ J(Y , γ, Y d, Red)

NSC(Y , P, γ) = 0
NSS(Y d, Pd, Red) = 0

Table 3 shows that optimization results differ from one typical value of Red to another.

Table 3: Optimization results for typical values of Red

Red Ā f̄ Cost function Value C̄d

5 2.49 0.58 79.56 1.03
30 3.00 0.73 66.07 0.99
200 3.45 0.72 122.79 1.01

The resulting drag coefficient value is the lowest for Red = 30. Indeed optimal pa-
rameters (A, f) for γ = Asin(2πft + φ) are the closest to the ones found in [11]. One
can finally remarks that the cost functional Minγ J(Y , γ, Y d, Red) with respect to con-
straints NSC(Y , P, γ) = 0 and NSS(Y d, Pd, Red) = 0 is minimized for such value of
Red.

By considering the following optimization problem :


Minγ,Red

J(Y , γ, Y d, Red)
NSC(Y , P, γ) = 0

NSS(Y d, Pd, Red) = 0

Minimum is reached for

(Red, A, f) = (30, 3.00, 0.73)

and agrees with previous results. The corresponding cost function value is J = 66.07.
On can remark that the appropriate profile for Y d seems to be the solution of the previous
optimization problem. However, such problem is hard to be implemented due to the
increase of the number of high dimension unknowns to be optimized ((Y ,Y d)). Therefore
it’s necessary to compute Y d in a different way. One can remark that variations of
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J(Y , γ, Y d, Red) is more sensitive to (Red,Y d) than (γ, Y ). That is, one can expect to
retrieve optimal value of (Red, Y d) if (γ, Y ) remains fixed. Numerically, γ was choosen
to be equal to 0 while Y is simply the control free flow at Re = 200 (denoted by Y 0). In
a mathematical formulation, it consists in finding Red solution to :

{
MinRed

J(Y 0, 0,Y d, Red)
NSS(Y d, Pd, Red) = 0

Figure 10 shows behaviour of Red → J(Y 0, 0, Y d, Red) with respect to constraint

NSS(Y d, Pd, Red) = 0

The previous assumption is verified by remarking that optimal value of Red is approxi-
mately equal to 30.

The closest Y d profile to Y 0 in L2 sense leads to the best results for our optimal control
problem in terms of drag reduction. This result seems to be all the more paradoxal that
Cd value for stationary flow Y d is greater than the one obtained for Y at Re = 200 when
no control is enforced at the cylinder boundary (cf. Figure 8). Let’s recall that we don’t
aim at reducing directly Cd through minimization of J . Instead, the objective is to reduce
vortex shedding by reaching an appropriate flow profile Y d. Undirectly, we expect and
observe that reducing vortex shedding leads to drag reduction and this independently to
Cd value of Y d.

The fact that the best profile Y d is computed for Red = 30 seems to be linked with
the length of its recirculating zone. One can observe numerically that this length is close
to the vortex one.

In the sequel, we use Y d computed at Red = 30.
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Figure 10: Values of G(Red)

6.4 Convergence of our algorithm

Our algorithm was initialized for several values of γ. In most of the case, it converged to
the following sub-optimal parameter :

(Â, f̂ , φ̂) = (2.85, 0.75, 0.78)

that is close to the one obtained with BFGS for Red = 30.

Behaviour of the algorithm is quite independent to initialization. Table 4 shows its
behaviour for a typical initial condition.
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As a first step, a sharp decrease of cost functional F is observed at the upper part of
Table 4. Indeed, our coupled POD-ROM model is in most of the case a good prediction
of flow behaviour as ρ > 0.5. For comparison purposes, evolution of TRPOD is shown
in Table 5. A slower decrease is observed for TRPOD at this step. In order to know
whether our coupled POD-ROMS models is involved in this sharp reduction or not we
compare the fiability of both models within a trust region that is centered at γ, where k
is selected from the first step. A random exploration for the control γ is made within this
trust region. ρ can now be considered as a random variable (as a function of γ), where
we recall that

ρ =
F (γk) − F (γ)

F p(γk) − F p(γ)

and is the fiability criteria of the reduced cost function F p at γ.

The probability distribution of ρ̃ = min(ρ, 1
ρ
) is shown at Table 6.

Relevancy of both reduced order models are comparable at this step of our algorithm.
Therefore, the significant decrease of F is due to the multiobjective part of our reduced
cost function model, where the gradient information was included.

During the second step of our algorithm, a decrease of trust region radius is observed
when close to an optimum, corresponding to a slow decrease of F . In comparison, TRPOD
algorithm fails in fully converging as observed in Table 5. One can remark through
Table 6 that ρ̃ probability density has values concentrated around 0 for simple POD-
ROM model. Thus, it is not relevant enough to be a good prediction of flow behaviour.
The same remarks could be applied to the coupled POD-ROMs when facing for the first
time an unsuccessful test within an iteration loop (Coupled model number 1 in Table 6).
However in such case the coupling is updated, leading to another prediction (Coupled
model number 2). The probability density switched from values around 0 to values above
0.5, which means that the new prediction model is good enough to go on the optimization
process as shown in Table 4.

Iteration number np function cost value ρk

Step 1
1 88 69.64 1.04
2 87 68.55 0.75
3 89 67.47 0.23
4 92 67.21 0.62
5 91 67.02 0.72
6 93 66.78 0.80
7 95 66.51 0.70
8 95 66.31 0.56

Step 2
9 98 66.23 0.23
12 118 66.20 0.52
13 121 66.15 0.60
15 147 66.10 0.50

Table 4: Convergence results for our Algorithm
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Iteration number np function cost value ρk

Phase 1
1 90 69.64 0.18
2 90 69.57 0.15
3 90 69.52 0.26
4 90 69.46 0.52
5 91 69.44 0.50

Phase 2
6 91 69.44 -1.7
... ... ... ...

Table 5: Convergence results for TRPOD

Modèle POD p(ρ̃ ≤ 0) p(0 < ρ̃ ≤ 0.5) p(0.5 < ρ̃)

Phase 1
simple 0.09 0.32 0.59
couplé 0.09 0.29 0.62

Phase 2
simple 0.68 0.19 0.13

couplé 1 0.59 0.23 0.18
couplé 2 0.15 0.31 0.54

Table 6: Fiability of POD-ROMs models

When the optimal control is applied to the cylinder boundary, flow dynamics follows
2 regimes.

A transient regime first appears in a time window of length 30. The reduction of
Cd is significant (28%) regarding the original one of the periodic control free case (cf.
Figure 13).

A periodic regime then follows where Cd oscillates around its mean value 0.99. Vortex
shedding almost disappears past the cylinder with residuals observed at the limits of
the wake (see Fig. 11). The spectral analysis of Cl in Figure 12 shows its predominant
frequency is identified with the cylinder rotation one. In other way, flow dynamics is
totally managed by this rotation.
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Figure 11: Control free flow and controlled one
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Figure 12: Spectral Analysis of Cl
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Figure 13: Drag and Lift coefficients evolution
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7 Conclusions

Optimal Control Theory provides a significant framework for designing a relevant control
that reduces vortex sheddings in a cylinder wake. It becomes all the more attractive
that the corresponding optimization methods are less computationally demanding. In
this way our improvement of TRPOD algorithm is promising. When it is applied to the
cylinder wake flow control problem, we observe both time cost reduction and convergence
towards well known results. Through the use of Coupled Low-Order Prediction Models
and Multiobjective Optimization, accuracy and convergence difficulties encountered when
prediction models are used within an optimization loop are overcome. However our nu-
merical configuration is quite restrictive as we use a parameterized control applied to a
circular cylinder in laminar regime. Thus the next steps would consist in validating our
algorithm under smoothened conditions, in particular when Reynolds number increases,
leading to tridimensional effects concerning flow behaviour.
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