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Abstract

Howard Brennér3 has recently proposed modifications to the Navier-Stokesitaans that relate to a
diffusion of fluid volume that would be significant for flows wittghidensity gradients. In a previous pa-
per? we found these modifications gave good predictions of theous structure of shock waves in argon
in the range Mach 1.0-12.0 (while conventional Navier-8tokquations are known to fail above about
Mach 2). However, some areas of concern with this model wesengewhat arbitrary choice of mod-
elling codficient, and potentially unphysical and unstable solutidnsthis paper, we therefore present
slightly different modifications to include molecule masf§uwdion fully in the Navier-Stokes equations.
These modifications are shown to be stable and produce pihgsictions to the shock problem of a qual-
ity broadly similar to those from the family of extended hgdynamic models that includes the Burnett
equations. The modifications primarily add &dsion term to the mass conservation equation, so are at
least as simple to solve as the Navier-Stokes equations #re none of the numerical implementation
problems of conventional extended hydrodynamics modalsiqularly in respect of boundary conditions.
We recommend further investigation and testing on a numtiifierent benchmark non-equilibrium flow
cases.

1. Background

A parameter which indicates the extent to which a local negibflowing gas is in thermodynamic equilibrium is the
Knudsen number: 12
Kn:Ez—|Vp|, (1)
P
whered is the mean free path of the gas moleculeis,a characteristic length of the flow system arisla characteristic
mass density. AKn increases, e.g. for vehicles travelling at hypersonic dpee at high altitudes, the departure
of the gas from local thermodynamic equilibrium increasss] the notion of the gas as a continuum-equilibrium
fluid becomes less valid. The Navier-Stokes equations (stahdard no-slip boundary conditions) are, for example,
typically confined to cases whein < 0.01. Their underlying constitutive laws for viscous stresssorT and
heat fluxj,, i.e. Newton’s law and Fourier’s law respectively, may bewda from the Boltzmann equation using the
classical Chapman-Enskog expansioikKimto first order.Extendedor modified hydrodynamicsnodels, such as the
Burnett equations, are based on Chapman-Enskog expansihigher orders in an attempt to extend the range of
applicability of the continuum-equilibrium fluid model mthe so-called ‘intermediat€n’ (or ‘transition-continuum’)
regime where @1 < Kn < 1. Extended expressions férand j, include the same terms to first orderdn contained
in Newton’s and Fourier’s laws respectively, but with thelgidn of numerous, more complex terms that make them
notoriously unstable and costly to solve.
In 20041 Howard Brenner proposed that the velocitgppearing in Newton'’s viscosity law is generallyfdrent
from the mass velocity,, appearing in the mass conservation equation:

8—p+V-(pum)=0. (2)

ot

He subsequently related the two velocities byifgusive volume flux densify = u — u, and proposed a constitutive
model relatingj, to Vp, similar to Fick’s law of mass diusion? From this he derived modifications to the Navier-
Stokes equations in which the governing transport equattdmass, momentum and energy remained unchanged but
the constitutive equations fdrand j, are augmented by additional terfh¥he resulting equations have the form of an
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extended hydrodynamics model, albeit one much less contipdexthe family of hydrodynamics models that includes
Burnett, Grad, etc.

The viscous structure of shock waves in gases provides apwbtest case for Brenner's modifications since
they become increasingly significant@sincreases. While it is accepted that the Navier-StokestamsHail in nearly
every respect in predicting correct shock structures ahbeeit Mach 2, they do reproduce the trends in experimental
and molecular dynamics simulation data significantly etteen Brenner’s modifications are included, delivering an
excellent match in the case of the inverse density thickhel$dgs of some concern, however, that shock solutions
are nonphysical when the proportionality deentD,, used in the constitutive model for volumefdsion, exceeds
approximately the kinematic viscosity= u/p, whereu is the dynamic viscosity. Furthermore solutions were shown
to be unstable wheb, > 1.45. The imposed limit orD, effectively dictates the choice @, = v for which there is
apparently no strong physical justification.

Nevertheless, the results do partially support Brenneiggreal hypothesis — which is undoubtedly viewed with
scepticism by some because it challenges the fundamentatieqs of fluid mechanics. Particular areas of criticism
are that the underlying theory lacks a sound physical basissabased on the notion of afiilisive volume flux which
is somewhat diicult to conceptualise and for which constitutive models #mailr codficients are untested. However,
support can be found in the phenomenological GENERIC theoegented by Hans Christian OttingerOttinger
guestions why a diusive transport term exists for both energy and momentumdiurnass in the conventional Navier-
Stokes equations and argues “something is missing”, nathelgbility of mass dfusion to produce entropy. When
dissipative terms associated with mass density are idglytizero, the GENERIC formulation arrives at the standard
Navier-Stokes equations but, by including non-zero teamsyised set of governing equations is derived that incdude
two velocities, similar tau, andu. The modifications are simply due to masgution rather than the filicult concept
of a diffusive volume flux.

Brenner subsequently adopféde equations of Ottinger whichfir from his original modifications particularly
in thatu appears not only in Newton’s viscosity law but in the deforitof momentum density itself. The purpose
of this present paper is to provide additional argumentwodia of the inclusion of mass flusion and to examine its
impact on the governing equations in detail. We assess #idist of the underlying equations and their ability to
predict the structure of shock waves.

2. Mass difusion and conservation

Thermal agitation causes molecules to travel from one regfa gas to another. Inequalities in molecular distribu-
tion and thermal velocity tend to be smoothed by an inewétalgt migration of molecules towards regions of lower
molecular concentration afat temperature. This is the process by which mafsisis and, in the simplest case of a
single specie gas, aftlisive fluxjy occurs in the direction of negative density gradient, esped through Fick's law
simply asjy = —DmVp whereDy, is the codicient of mass dfusion (self-dffusion, in the case of a single specie gas).
The conventional governing equations clearly omit the pssmf mass éusion due tasnetmigration of molecules by
thermal agitation because they do not contain Fick’s or ahgraconstitutive model in the equation of conservation of
mass. This is important in extended hydrodynamic modedbirfyypersonic flows because the omission becomes more
significant asVp and, thusKn become larger.

Modelling of mass dtusion is, of course, a common feature in the analysis of oarttponent fluid systems. The
usual approach is to retain the conservation equation farftaid mass given by (2) and create additional conseraatio
equations for the mass of individual gas species that eathde a difusive mass flux term. However, forN gas
species, onl\N — 1 equations of specie mass conservation are independemideethe sum of all equations gives
(2). This means that masdidision is not modelled for one of the species, a statemenapdies to the case of a single
specie gas described in the previous paragraph. It happeasige (2§lefinesoun, to be thetotal mass flux density,
i.e. the sum of the bulk, advective mass flux of the fluid anchistesum of difusive mass flux of all consitutents of the
fluid. In other wordspy, constitutes a mean, or local mass average, velocity of akitatents of the fluilof which
the advective velocity is only a part.

The inability to model net massttlision and associated irreversible energy dissipationcréna only worrying
consequences of combining advective and ntsive fluxes into a single velocity,. It has been argued that, by
doing this, Fick’s law for a constituent is applied relatteethe net flux of all constituents when it is only applicable
relative to a frame of reference external to the fRiidlso, velocity associated with masdfiision has questionable
physical significance because where the concentration oka gpecie- 0, its difusion velocity— co.°

Instead, let us split the total mass flux dengity, = pu + j4 whereu is termed the advective velocity. If the
diffusive flux is modelled by Fick’s law, this leads to the follagimass continuity equation:

%+V-(pu)—V-(DmVp)=O. 3)
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This is the form of mass conservation equation proposed bigder expressed in terms af notun,. It is interesting
to observe that the ratigy. of diffusive mass flux to advective mass flux can be expressed as

DmV, 1 Kn
Rdc=’ T ,O'

= e 4
ou A +yScMa’ (4)

where: the Mach number of the floMa = |u|/c with ¢ the speed of sound; the Schmidt numBer= v/Dyy; y is the
ratio of specific heats at constant pressure and vollinés based on a Maxwellian mean free pafh = A, \/yv/cC,

with A; = 16/(5V2r) ~ 1.28. For argon gasy = 5/3 and the coféicient of self-difusion of masD, ~ 1.32y,10-12
soSc= 0.76 and therRy. ~ 0.8Kn/Ma. In a planar shock in argon at Mach 4 upstre&m,~ 0.275 (see figure 3)
andMa ~ 1.0 local to the midpoint across the density profile Rag ~ 22%. The omission of massftlision from the
governing equations will clearly lead to error at such a High It could also be expected thR is high in regions

of low speed and moderate density gradient such as bouradassland wakes, both regions where the departure from
non-equilibrium behaviour is most pronounced in hypersdoivs 3

3. Momentum and energy conservation

Brenner’s original hypothesis was that Newton'’s viscolsity should be expressed in termaugfnotuy,, Along with his
own supporting analytical and experimental evidencegtisealso the argument that velocity in Newton’s viscosity la
represents deformation of fluid volume and therefore cabadtased on mass averageelocity u,,.2 The argument
that velocity relating to mass fliision has no physical significarfceffectively precludes the use af, in Newton’s
viscosity law.

Ottinger additionally defines momentum densitypas not puy,, so that momentum relates purely to advective
mass flux, not dfusive mass flux. This seems reasonable given that the agwdcitx is caused by mean translatory
motion of molecules, associated with mechanical energyeasthe dtusive mass flux is caused by random motion of
molecules associated with thermal energy. At the very Jéagime momentum is attributed to masffasion, it must
relate to a separate driving force independent of viscouefassociated with advective momenfuifihe resulting
equation can be alternatively viewed as the governing émuéir momentum in the absence of a (netfukive mass
flux. Following these arguments, the momentum equation is #se standard governing equations (ignoring body
forces) but expressed in termswfnotupy,:

p%ﬁ:%+v-(pumu)=v-P, (5)
where the stress tensBr= T — pl (defined as positive in tensiorp,is pressure antithe unit tensor. Newton'’s law is
expressed ab = 2udev(D) + «tr(D)l wherex is the bulk viscosity, the deformation gradient tenBot symmEu) =
(1/2) [Vu + (Vu)T] and its deviatoric componentdéY) = D — (1/3) tr(D)l. Note that the material derivatinig/Dt is
decomposed into the local rate of chadgét and the convective rate of change based on the local velotayfluid
element that both advects andfdses, i.eun,.

The derivation of a conservation equation for energy withaontinuum framework that includes masfulion
is more challenging. The energy equation derived using GEIE for example, contains an unconstrained phe-
nomenological parameter that has to be determined by tlera@iynulation and confirmed by experiment. Derivation
through physical argument alone requires careful accogmati contributions of massfiiusion to mechanical and ther-
mal energies and associated work. As a first approximatiergquate the rate of change of total energy to mechanical
and thermodynamic energy fluxes (ignoring internal sogrces

po= = W8 5 (o) = v (P) -V ©)
where the mechanical energy flux densiy\) relates to the advective velocityonly and heat energy flux is attributed
to conduction only by Fourier’s laj, = —kVT wherek is the thermal conductivity. The total energy per unit mass
represents all mechanical and thermal energy contribsitimitial simulations of the shock structure problem shdwe
the temperature-density separation, discussed in seé&Bpmwas strongly underpredicted when Ehincluded a kinetic
energy due to advective mass flux only. Instead, much beteligiions were obtained when the kinetic energy was
due to the total mass flux such thHat= e + |um|?/2, suggesting that net masdfdision contributes to an additional
source of energy beyond the internal energy.

4. Stability analysis

The same stability analysis was undertaken on the set ofrgioeequations proposed in this work that previously
highlighted limitations of Brenner's original modificatie* Following the procedures described previoushy; it is
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Figure 1. (a) temporal stability analysis; and, (b) spattability analysis of modified Navier-Stokes equationgygr
shaded area indicates region of instability).

first assumed that the gas is monatomic and calorically pienfgh y = 5/3, Prandtl numbePr = [yR/(y — 1)](u/K) =
2/3, whereR is the gas constant, and= 0. The governing equations from sections 2 and 3 are liregiiis 1-
dimension to produce the following non-dimensionalisedyreation equations:

0 1 O c
%Jr[l 0 l]gferai'{”/}:O’ 7
0 % 0 q
where 19 49 50T
/___ p, I___ u/ I___ !
“Tscox’ 7 T T3ax and g’ = 20x ®)
We assume a solution to (7) of the form
¢ = ¢ expfi(wt’ —kx)}, 9)

whereg is the amplitude of the wave, is its frequency and its propagation constant. Equations (7) to (9) can be
combined to produce a set of linear algebraic equationseofiaim

Aw, K)p = 0, (10)

for which non-trivial solutions require
det[A(w, K)] = 0. (112)

For our modified governing equations, (11) yields the follaywcharacteristic equation:
Biw® + (23+ 6Sc)k%w? — [10K? + (20+ 23Sc K iw — [(15 + 4Sch)k* + 20Sc k8] = 0. (12)

If a disturbance in space is considered as an initial-vatablpm k is real andv = wy + iw; is complex. The form of
(9) indicates that stability then requires > 0. If a disturbance in time is considered as a problem of diggarom
the boundaryy is real anck = k; +ik; is complex. For a wave travelling in the positixéirection k. > 0, and stability
then requires that < 0. For a wave travelling in the negatixedirection, the converse is tru& < 0 and stability
requiresk; > 0.

We examine temporal stability by solving (12) numericalty & for values ofk in the range 0< k < co.
Trajectories ofw are plotted in the complex plane in figure 1(a). Stability wested across a broad range ot &
Sc< 1.0 and sets of trajectories are plotted at the two extremesotim cases the trajectories all lie within the region
wj > 0, indicating stability for alk.

We then turn to examine spatial stability by solving (12) muirally fork for values ofw in the range & w < co.
Trajectories ok are plotted in the complex plane in figure 1(b) for the samaesbfScas before. In both cases, the
trajectories do not violate the stability condition. Theuks therefore show stable solutions for the modified Navie
Stokes equations presented in this paper.
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5. The shock structure problem and solution procedure

The shock structure problem presented in this paper costkenspatial variation in fluid flow properties across a
stationary, planar, one-dimensional shock in argon. Wendedfie flow as moving at an advective speeih the
positive x-direction, with the shock located at= 0; the upstream conditions at= —oco are supghypersonic and
denoted by a subscript ‘1’, downstream conditiong at +co are denoted by a subscript ‘2’. Shocks were simulated
for a range of upstream Mach numbe? k Ma; < 11.0 with the problem initialisation and viscosity model dégdli
previously? but outlined briefly below.

The simulations adopted the same thermodynamic modelsaafiteents for argon used in earlier sections. The
diffusive transport models were those previously described tvé ratios of coicients specified for argon, notably
Pr = 2/3 andSc = 0.76. The viscosity-temperature relation for argon was medtby a power law of the form
u = ATS using an exponerg = 0.72 from independent experimental data. Since the resultthfe problem are
historically presented in normalised form, the test probleas specified conveniently in a nondimensionalised form.
The viscosity cofficient was set té\ = 1, and in all simulationg; = T; = 1 was specified at the upstream boundary.
A gas constanR = y~! = 3/5 was chosen so that = 1 and, simplyu; = Ma; for the particular simulation. At the
downstream boundary, the normal gradient was specifiedragaeaall dependent variables exceptwhose value was
specified using the Rankine-Hugoniot velocity relation @imtain the shock stationary and fixed within the domain.

Simulations were performed using our solver, describecetaitielsewheré,developed using the open source
Field Operation and Manipulation (OpenFOAM) softwa?e solution domain of 33y; was used in all simulations,
wide enough to contain the entire shock structure comfbytdbitial results were obtained using the conventional
Navier-Stokes equations that converged on a mesh of 8@0toedlithin 1% of the solution extrapolated to an infinitely
small mesh size. The results presented in this paper werkiped with a mesh of 2000 cells, corresponding to a
mesh size of 0.0171y31. Numerical solutions were executed until they convergesteady-state, at which point the
residuals of all equations had fallen 5 orders of magnitude ttheir initial level.

Physical properties such asandT vary continuously through the shocks from their upstrearthé&r down-
stream levels over a characteristic distance of a few mesnfaths. Results presented in this paper are normalised
between 0 and 1 and denoted in the following by the supetscripagainst distance through the shock, nondimen-
sionalised bylyi. Where possible results are compared with actual expetsifet? rather than numerical Direct
Simulation Monte Carlo (DSMC) data, since the latter reggiicertain assumptions relating to the form of the inter-
molecular force law.

6. Results

Figure 2(a) shows the variation pf andT* through a shock of Mach 2.84 calculated using the Navieké3@nd
modified Navier-Stokes equations. The experimental depsitfile of Torecki and Walentd is also shown. Itis clear
that the shock layer predicted by the conventional Naviek&s equations is too thin, whereas the modified Navier-
Stokes equations produce good agreement with the expdgafhrdata. The main region of disparity is upstream of
the shock layer (left hand side in the figure) where the ptedfidrails out and is flatter than the experimental data.

*x *x

*e o

= 10+ (a 2 L0FMB) oz

o o

g— 0.8 g. 08 L

= 8

+~ 0.6+ .- 06}

= p=y

£ 04 2 04t

© ©

T 02t modified N-S —— T 02t modified N-S ——
Q2 Navier-Stokes ---- 2 ; Navier-Stokes ----
g 0.0 Experiment o g 0.0 feco-227 - Experiment o
‘5 I I I I I ‘5 I I I I I

zZ zZ

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Distance through shocki 1] Distance through shock 1]

Figure 2: Simulated and experimental profiles of a statipshock at: (a) Mach 2.84; (b) Mach 9.0
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Similarly, figure 2(b) shows the predicted profiles for a M&t shock compared with experimental density data of
Alsmeyer!® Again, standard Navier-Stokes equations produce a shatkeguwhich is too thin when compared with
experiment. However, the modified Navier-Stokes equaiimaduce excellent agreement with the experimental data.

6.1 Inverse density thickness

Apart from direct comparison of calculated and experimiestitack profiles, there are other shock parameters for which
experimental angr independent numerical data is available. The principadmeter is the non-dimensional shock
inverse density thickness, defined as:
Lt = 0. (13)
pP2—p1
Comparing (1) and (13) it can be seen that, in the absencelwdracteristic length scalein an unconfined flow, the
definition of Kn requires a characteristic dimension of a flow structurehis tase the actual thickness of the shock
layer itself. Therefordl;;1 has the interesting feature that it represérigor the shock structure case. Alsmelfere-
ported the most comprehensive collection of experimehtatls data, consisting of his own results and work published
previously. Figure 3 shO\Ms;1 for argon shocks up to Mach 11, comparing simulation resuitsexperimental data
from Alsmeyet® and other source’d:1® The Navier-Stokes equations predict shocks of approximnhatdf the mea-
sured thicknesses over the entire Mach number range.;hmdicatesKn, this poor agreement is expected because,
over most of this Mach number randé ~ 0.2—03, beyond the acceptdét limit of application of the Navier-Stokes
equations. However, results from the modified Navier-Staguations match well with experiment, suggesting that
correct prediction of density gradient has been attainecblogect modelling of mass fiusion.

6.2 Density asymmetry quotient

Agreement of predicted and experimental shock inverseityehgcknesses is not the only measure of the success of
a model. AsL;l depends on the density gradient at the profile midpoint alibi®es not express anything about the
overall shape of the profile. Instead, a second parametecdhabe used to describe the shock profile, and for which
experimental data is available, is the density asymmetotigat Q,. This is a measure of how skewed the shock
density profile is relative to its midpoint. It is defined folalimensional profile of normalised densjy, centred at
p*=050nx=0,as

) 12 p* (9 dx
o L -pr001dx

A symmetric shock would consequently ha@g = 1, but real shock waves are not completely symmetrical aleirt
midpoint. First, their general form is skewed a little todsthe downstream. Then, the flattenedugiive region, that

Q (14)
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extends upstream of the shock profile, tends to incr@gseith increasing Mach number. Figure 4 shows experimental
datd®in which Q, increases fairly linearly frome 0.9 at around Mach 1.5, through unity at around Mach 2.3, 1015
at Mach 9.

Results from the Navier-Stokes equations do not agree wetllexperimental dataQ, > 1.0 at Mach 1.2, and
rapidly increases with Mach number with the profile sharpgriownstream of the shock until by Mach 4 it levefs o
to Q, ~ 1.4, compared te- 1.03 from experiment. The modified Navier-Stokes equatioméiaily overpredictQ, at
Mach 1.2 but, with increasing Mach numb@&, quickly levels df at~ 1.1 so that, by Mach 6Q, matches well with
experiment and the density profiles are very well prediategl, for the profile at Mach 9 in figure 2(b).

6.3 Temperature-density separation

In a shock, the density rises from its upstream value to itgndtream value behind the temperature, due to the finite
relaxation times for momentum and energy transport. Erpamtal data for this phenomenon is scarce due to the
difficulty in measuring temperature profiles, but results frontM@Ssimulations provide such data. Figure 5 shows a
comparison of profiles for a Mach 11 shock from our simulatiand those calculated using DSMTDSMC clearly
predicts a much larger separation distance between deargityemperature profiles than conventional Navier-Stokes
equations. The modifications to Navier-Stokes do incrdasésmperature-density separation, though not to the exten
of the DSMC predictions. The temperature profile predictethie modified Navier-Stokes equations is generally less
diffusive than that predicted by DSMC, particularly at the wgzstn end.

7. Conclusions

It is accepted that the conventional Navier-Stokes equosatfiail to predict correct shock structures above about Mach
2, where the flow falls within the intermediakas regime. Brenner’s modifications to Navier-Stokes imprdwve t
predictions of shock structures considerdyit only with the somewnhat arbitrary choice offdsion codicient

Dy = v based on an upper limit above which the equations produchysigal solutions and, at even highy,
become unstable.

Rather than basing the modifications to Navier-Stokes ondkien of a difusive volume flux, we instead present
modifications due to the inclusion of affilisive mass flux. The resulting set of governing equationseteh similar
improvement over conventional Navier-Stokes in reprodgithe trends in the experimental and DSMC data, and in
the case of the inverse density thickness produce a very g@ich. The new model useskaowncodficient for
self-diffusion of mass for argon and the equation set does not extébitriphysical and unstable behaviour previously
observed with Brenner’s modifications. The new equatiolissettremely easy to solve: it contains none of the higher
order derivatives of the Burnett family of models, nor them® derivative of density contained within Brenner’s
original model; indeed, the addition of afldisive term to the mass conservation equation makes the nexgsmbly
easier to solve numerically than the conventional Naviek&s equations themselves.



2.11 RAREFIED FLOWS OF THE SYMPOSIUM 2

While it is important not to draw strong conclusions basedush one test case, the results are generally en-
couraging. Our future aims are: to test this model furtheasumber of benchmark cases ranging from high-speed
flows encountered in hypersonics to specific studiesftifision phenomena such as thermophoresis, and to refine and
develop the models accordingly.
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