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Abstract 
Two-dimensional direct numerical simulation (DNS) of the wave-packet evolution in a supersonic 
boundary layer over a flat plate is carried out. At first a steady-state solution of supersonic flow over a 
flat plate at free-stream Mach number 6 is calculated. Then, unsteady disturbances (local in time) are 
induced in the free stream (fast or slow acoustic waves) or on the plate surface (local blowing-suction). 
Another case of a steady-state solution is a separated supersonic flow over a compression corner at the 
free-stream Mach number 5.373. Propagation of the wave packets through the separation point, 
recirculation zone and reattachment point is investigated. 

1. Introduction 

In quiet free streams on aerodynamically smooth surfaces, laminar-turbulent transition includes: 1) excitation of 
unstable normal modes by free-stream disturbances (fast and slow acoustic waves, vorticity and entropy 
perturbations) as well as by wall-induced disturbances (vibrations, periodic blowing-suction, surface irregularities, 
heating et al.); 2) downstream amplification of unstable disturbances that is described by linear stability theory 
(LST); 3) nonlinear breakdown to turbulence that occurs when the disturbance amplitudes achieve a certain critical 
level.1,2 The first stage (receptivity) refers to mechanisms by which free-stream disturbances enter to the laminar 
boundary layer and generate unstable waves.3 
Theoretical studies of Mack4 and stability experiments5-7 showed that the evolution of disturbances in supersonic 
boundary layers on a sharp cone and a flat plate is essentially different from the case of subsonic flows. Besides the 
first mode associated with Tollmien-Schlichting waves, there are the second and higher modes relevant to the family 
of trapped acoustic waves.8,9 The second mode becomes a dominant instability at sufficiently high Mach numbers M 
(for the boundary layer on thermally insulated wall at zero pressure gradient, this occurs for M>4). In contrast to the 
first mode, the second-mode growth rate is maximal for two-dimensional (2-D) waves. This facilitates modelling of 
receptivity and instability phases associated with the second mode. 
Fedorov and Khokhlov10 developed a theoretical model of receptivity to acoustic disturbances radiating the sharp 
leading edge of a flat plate in supersonic flow. The boundary layer mode excited near the leading edge by fast 
acoustic wave can be referred as Mode F, and by slow acoustic wave – as Mode S. The theoretical predictions11 of 
the receptivity coefficient agree well with the experimental data of Maslov et al.12, which were obtained in the T-326 
Mach 6 wind tunnel of the Institute of Theoretical and Applied Mechanics (ITAM, Novosibirsk). They are also 
consistent with the DNS.13 
Unfortunately, experimental investigations of boundary-layer disturbances at hypersonic speeds are very limited. 
Numerical experiments seem to be the only way to acquire detailed data on the disturbance evolution in various 
phases of transition. This explains high interest in DNS of disturbances in boundary layers at supersonic and 
hypersonic speeds. Ma and Zhong14-16 conducted a series of DNS related to receptivity and stability of high-speed 
flows over a parabolic leading edge and over a flat plate. Balakumar et al.17-19 numerically investigated stability and 
receptivity of hypersonic boundary layer over a compression corner, blunted flat plate and cone. Egorov et al.20-21 
carried out series of numerical simulations of stability and receptivity of hypersonic boundary layer to the wall 
blowing-suction as well as to free-stream fast and slow acoustic waves with various angles of incidence. In these 
studies, a perturbation source run all the time and generates harmonic or time-periodic disturbances. However, 
natural sources induce wave-packets in a limited time interval rather than harmonic waves.  
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In the majority of theoretical and computational models, disturbances are treated as elementary waves of the discrete 
spectrum. In natural condition, disturbances of broad spectrum are typical. Their evolution occurs in both space and 
time and depends on flow properties and initial distribution. The first step in solving of this problem is to consider 
propagation of a wave packet localized in a narrow frequency band.22,23 A series of such wave packets can 
approximate the evolution of the broad spectrum disturbances to some degree of accuracy. This explains why an 
isolated wave packet is one of the most popular subjects of inquiry in the boundary layer stability problem.24-26  
In Section 2, we formulate the problem. In Section 3, we discuss DNS of two-dimensional wave packet propagatiing 
in the boundary layer over a flat plate at the free-stream Mach number 6. An isolated wave packet is initialized by a 
localized in space and time blowing-suction as well as by fast and slow acoustic waves of zero angle of incidence. 
The wave packet, which is excited in the boundary layer, contains different modes. Each mode amplifies or decays 
during the wave-packet propagation. Ultimately, the overall motion will consist of the sum of these modes suitably 
weighted, in both phase and growth, by factors appropriate to the dispersion law. 
We also consider a separating flow over a compression corner (Section 4) at the freestream Mach number 
M 5 373∞ = . . This configuration is typical for various units of high-speed vehicles: ducted air intake surface 
breaks, generating oblique shock waves, deflected steering surfaces (such as balancing flaps) etc. Typically the near-
wall flow over a supersonic compression corner comprises: the boundary layer upstream separation, the shear layer 
and recirculating flow in the separation bubble, the reattached boundary layer. Details of the wave-packet 
propagation through these regions are discussed. The paper is concluded in Section 5. 

2. Problem formulation 

Viscous two-dimensional unsteady compressible flows are governed by the Navier-Stokes equations resulting from 
conservation laws of mass, momentum and energy. The fluid is a perfect gas of the specific heat ratio 1.4γ =  and 
Prandtl number Pr 0.72= . The viscosity-temperature dependence is approximated by the power law 

( )0.7
/ /T Tµ µ∗ ∗ ∗ ∗

∞ ∞= . Calculations are carried out for hypersonic flow over a flat plate with sharp leading edge at 

the freestream Mach number M 6∞ =  and Reynolds number 6Re / 2 10U Lρ µ∗ ∗ ∗ ∗
∞ ∞ ∞ ∞= = × . Hereafter ρ∗

∞  is 

freestream density, U ∗
∞  is freestream velocity, L∗  is plate length, asterisks denote dimensional quantities. The flow 

variables are made nondimensional using undisturbed freestream parameters: ( , ) ( , ) /u v u v U∗ ∗ ∗
∞=  – velocity 

components, * 2/( )p p uρ∗ ∗
∞ ∞=  – pressure, /ρ ρ ρ∗

∞=  – density, * /T T T ∗
∞=  – temperature. Dimensionless 

coordinates and time are ( , ) ( , ) /x y x y L∗ ∗ ∗= , * /t t U L∗ ∗
∞= . 

The boundary conditions on the solid wall ( 0y = ) are: no-slip condition ( , ) 0u v = ; / 0wT y∂ ∂ =  corresponding 
to the adiabatic wall. On the outflow boundary, the unknown variables , , ,u v p T  are extrapolated using linear 
approximation. On the inflow and upper boundaries, conditions correspond to the undisturbed free stream. Details on 
the problem formulation and governing equations are given in Ref. 20. 
The problem is solved numerically using the implicit second-order finite-volume method.20 Two-dimensional 
Navier-Stokes equations are approximated by TVD shock-capturing scheme. It allows for modeling of the 
disturbance dynamics in the leading-edge vicinity, where receptivity to free-stream disturbances is most pronounced. 
Nevertheless this computational scheme damps physical waves, especially near the peaks and valleys. The numerical 
dissipation can be suppressed using sufficiently fine computational grids. Egorov et al.20 carried out 2-D DNS of 
disturbances generated by a local periodic suction-blowing in the boundary layer on a flat plate at the freestream 
parameters considered herein. It was shown that the grid of 1501 201×  nodes (with clustering in the boundary 
layer and leading-edge region) is appropriate for modeling of the boundary-layer instability. Namely, the calculated 
second-mode growth rate agreed well with that predicted by LST. With this reasoning the aforementioned 
computational grid is used for 2-D DNS discussed hereafter. 
At first, the steady-state solution, which satisfies the undisturbed free-stream boundary conditions on the inflow and 
upper boundaries, is calculated to provide the mean laminar flow. The steady pressure field (figure 1) indicates that 
the viscous-inviscid interaction of the boundary layer with the free stream leads to formation of a shock wave 
emanating from the plate leading edge. 
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Figure 1: Pressure contours in the computational domain 

3. Wave packet evolution in the boundary layer over flat plate 

3.1 Disturbances induced by suction-blowing 

For investigation of the boundary-layer stability, the initial disturbances are induced by the boundary condition that 
models a local periodic suction-blowing near the leading edge. The mass flow on the plate surface is given by 

 ( ) ( )1
1 2

2 1

, sin 2 sin , , 0w w
w

v x xq x t t x x x t nT
U x x

ρ ε π ω
ρ

∗ ∗

∗ ∗
∞ ∞

 −= = ≤ ≤ ≤ ≤ − 
, (1) 

where ε  is forcing amplitude; 1 0.0358x = , 2 0.0495x =  are boundaries of the suction-blowing region; the 

circular frequency / 260L Uω ω∗ ∗ ∗
∞= =  corresponds to the frequency parameter 4/ Re 1.3 10F ω −

∞= = × ; 

2T π ω=  is time period; n  is number of wavelengths of initial wave packet. The initial wave packets contain one 
wavelength ( 1n = , a short packet) or four wave lengths ( 4n = , a long packet). The suction-blowing amplitude is 

31 10ε −= × , at which disturbance evolution is linear. For the unsteady problem, the wall temperature corresponds 
to the adiabatic wall, ( ) ( ),w adT x t T x= ; i.e., the temperature disturbance is zero on the plate surface. The 
difference between the instantaneous flow field and the steady-state flow field represents the disturbance field. 
The pressure disturbances on the plate surface are shown in figure 2 at fixed time moments for the cases of short, 
long wave packets and in the case of source acting infinitely long time ( n = ∞ ). The amplitude of the long wave- 
packet is close enough to the amplitude of disturbances induced by a permanently acting source, while the amplitude 
of the short wave-packet is distant from these disturbances. 
For simulation of nonlinear effects, the forcing amplitude was increased to the level 23.6 10ε −= × . Comparison of 
the wave-packet amplitudes on the wall surface is shown in figure 3 at the time moment 1t = . As one can see, the 
nonlinear wave-packet has a different phase characteristics. 

3.2 Disturbances induced by fast and slow acoustic waves 

For modelling of receptivity to acoustic disturbances, a plain monochromatic acoustic wave is imposed on the free 
stream as 

 ( ) ( ) ( ), , , , , , exp , 0
TTu v p T u v p T i k x t t nTω∞∞ ∞

′ ′ ′ ′ ′ ′ ′ ′= − ≤ ≤   ,  

 
where , , ,u v p T′ ′ ′ ′  are dimensionless amplitudes 

( ) 2M , 0, , 1 Mu p v p T pε γ∞ ∞′ ′ ′ ′ ′ ′= ± = = = −  
 
the upper (lower) sign corresponds to the fast (slow) acoustic wave. The wavenumber is expressed as 

/( 1)k M Mω∞ ∞ ∞= ± . Herein we consider acoustic waves of small amplitude 55 10ε −= ×  at which the 



SESSION 2.14: HYPERSONICS AND BOUNDARY LAYER TRANSITION 

 4 

receptivity process is linear. The disturbance frequency 260ω = . The initial disturbance contains four wave-length 
(long wave packet of 4n = ). 
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Figure 2: Pressure disturbance amplitudes for the linear case; black line – long wave packet, red line – short wave 
packet, blue line – permanently acting source 
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Figure 3: Wall pressure disturbance amplitudes for the linear (black line) and nonlinear (red line) cases 

 
Receptivity to free-stream disturbances depends on both the level of acoustic near field (which results from the 
interaction between the incident disturbance and the leading-edge shock wave) and the difference between phase 
speeds of unstable boundary-layer waves and incident acoustic disturbances (synchronization condition). Details of 
the numerical simulation of receptivity to permanently acting free-stream acoustic disturbances at different angles of 
incidence are given in Ref. 21. 
The wall pressure disturbances induced by the long wave-packet of fast and slow incident acoustic wave are shown 
in figure 4. Receptivity to slow acoustic waves is essentially higher than that to fast waves. The pressure fields in the 
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case of fast wave are shown in figure 5 at different time moments. The pressure amplitude is relatively small in a 
layer, which occurs just above the boundary layer. This “quiet” layer separates the external acoustic field from the 
boundary-layer disturbances in a way that is consistent with the theoretical prediction10 for acoustic disturbances in 
the diffraction zone. The external acoustic field propagates downstream with the phase speed of fast acoustic wave 
1+1/M. The wave packet in the boundary layer travels downstream with relatively slow speed. As the wave packet 
evolves downstream, it disperses in space. 
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Figure 4: Wall pressure disturbance amplitudes for the case of fast (black line) and slow (red line) incident acoustic 

wave, t = 1 
 

 

 

 
Figure 5: Pressure fields for the case of fast acoustic wave 

4. Wave packet evolution in the boundary layer over compression corner 

Consider flow over a compression corner17 with the inclination angle 5 5α = . . Flow variables are made 
nondimensional using the same quantities as in the flat-plate case with L∗  being a distance from the leading edge to 
the corner point. Calculations are carried out for the flow parameters: M 5 373∞ = . , 6Re 5 667 10∞ = . × , 

1 4γ = . , Pr 0 72= . , * 74.194 KT∞ = . The wall temperature is 4.043wT =  ( 300 KwT ∗ = ). Dynamic viscosity 

t=0.4 

t=0.6 

t=0.8 
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µ  is approximated using the Sutherland formula. The computational grid has 2801 221×  nodes. The grid nodes 
were clustered in the boundary-layer and leading-edge regions. No-slip boundary conditions are imposed on the 
bottom surface. 
Because of the viscous-inviscid interaction, a shock wave forms in the leading edge vicinity. In the corner region, 
there are compression waves that interact with the boundary layer and induce a recirculation zone (separation 
bubble). The upper boundary of this zone is approximately a straight line that is typical for supersonic separation. 
Downstream from the reattachment point, the boundary layer is thinner than in the upstream vicinity of separation 
point. 
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(e) t = 1.25 
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(f) t = 1.50 

Figure 6: Wall pressure disturbances for the case of wave packet over the compression corner 
 
A local suction-blowing is introduced into the flow using the boundary condition (1) on the plate surface with 

310ε −= , 1 0.0358x = , 2 0 0521x = .  and 450ω = , 5n = . 
While the wave packet propagates through the separation zone, a sharp growth of the disturbance amplitude is 
observed in the numerical solution. This behaviour is essentially different from the case of the wave-packet evolution 
in the boundary layer over a flat plate. Moreover, such a sharp growth is not observed in the case of permanently 
acting source. This effect probably is due to the relatively broad spectrum of the wave packet and the presence of 
several length scales in the separation bubble. The wall pressure disturbances generated by blowing-suction are 
shown in figure 6 in the corner region at different time moments. 



I. V. Egorov et al. NUMERICAL SIMULATION OF WAVE PACKET EVOLUTION  

 7

0.85 0.9 0.95 1 1.05 1.1 1.15

0

0.005

0.01

0.015
y

x

 
(a) t = 1.00 

0.85 0.9 0.95 1 1.05 1.1 1.15

0

0.005

0.01

0.015
y

x

 
(b) t = 1.25 

0.85 0.9 0.95 1 1.05 1.1 1.15

0

0.005

0.01

0.015
y

x
 

(c) t = 1.50 
Figure 7: Pressure disturbance contours for in the separation bubble of compression corner, dashed lines denote 

streamlines of the mean flow 

5. Conclusions 

Two-dimensional direct numerical simulation of the wave-packet evolution in a supersonic boundary layer over a flat 
plate was carried out. Excitation of wave-packets in the boundary layer by blowing-suction, fast and slow acoustic 
waves was considered. The amplitude of the long wave-packet induced by blowing-suction is close to the amplitude 
of disturbances induced by a permanently acting source, while the amplitude of short wave-packet is distant from 
these disturbances. In the nonlinear case, dispersion characteristics of the wave packet are different from that 
observed in the linear case. 
Receptivity to free-stream disturbances depends on both the level of acoustic near field (that is associated with the 
interaction between the incident disturbances and the leading-edge shock wave) and the difference between phase 
speeds of unstable boundary-layer waves and incident acoustic disturbances (that is associated with the 
synchronization condition). Receptivity to slow acoustic waves is essentially higher than that to fast waves. 
As the wave packet propagates through the separation zone in the compression corner, a sharp growth of the 
disturbance amplitude is observed in the numerical solution. This behaviour is essentially different from the case of 
wave-packet evolution in the boundary layer over a flat plate. Such a growth is not observed in the case of 
permanently acting source. Presumably, this effect is due to the relatively broad spectrum of the wave packet and the 
presence of several length scales in the separation bubble. 
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