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Abstract: In this paper two approaches for terrain following of an autonomous
vehicle are presented. Both approaches assume that a two dimensional path is
available in advance that has been calculated by using a suitable terrain avoidance
technique. Range patches are used to adjust height above terrain leaving a set
clearance. First technique uses a repeated process of removing and readjusting
the node points according to practical vehicle constraints that finally gives a set
of discrete points in an optimum manner. Second uses optimally computed cubic
splines that parameterize the altitude to provide a very smooth reference path for
autonomous vehicle to follow. The optimal path lies as close as possible to terrain,
generated by solving a nonlinear problem that minimizes the deviation from the
set clearance of terrain satisfying constraints.
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1. INTRODUCTION

The fundamental idea in terrain following (TF) is
to compute a reference path for an autonomous
vehicle such that it follows terrain as close as
possible leaving a minimum clearance margin,
providing the tracking controller with feasible ref-
erence trajectories. These trajectories are required
to comply with constraints inherent to the system
or externally imposed such as system dynamics,
path constraints, actuator constraints and end-
point conditions. Trajectories that do not comply
with a system’s dynamics and constraints have
a small likelihood of implementation, since they
might place demands on the controller beyond its
limitations. Global trajectory planning requires
all information before any motion of a vehicle is
performed. When global information is not known
in advance or it is neither perfect nor predictable,
then there is a tendency to design so called local
trajectory planners. Although such planners lead
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to the loss of path optimality but their actions
are still focused on target reaching while avoiding
terrain. TF problem is also addressed by (Lu and
Pierson, 1995) using full point-mass dynamic. In
this paper two global terrain following techniques
are presented namely Stair Algorithm (SA) and
Cubic Spline Algorithm (CSA). In actual practice
terrain data is obtained from Digital Elevation
Map (DEM) but in this paper all experiments
are performed using Markov Model of terrain as
described in (Kuchar, 2001). SA can be used for
both off-line and on-line modes for reference path
generation. It can be used on-line mode because
of its computational efficiency and easy implemen-
tation provided a forward looking sensor is used.
While the (CSA) accepts more constraints and
can be used for off-line planning. SA is relatively
simple than CSA and is based on the ascend or
descend start decisions while flying at some fixed
altitude of current leg to reach at a desired alti-
tude of next leg. These legs are formed by dividing
horizontal range into small patches and initially



the altitude above terrain corresponding to a leg
is adjusted at constant level that include ground
clearance. It uses a repeated process of remov-
ing and readjusting the node points according to
practical vehicle constraints that finally gives a
set of discrete points in an optimum manner. The
objective of this work is
• A fast and computationally efficient method.
• Easy to implement in a simulation

CSA has the potential of incorporating further
constraints of curvature, kink and level flight in
some area. Cubic spline algorithm parameterizes
the altitude to provide a very smooth reference
path for vehicle to follow. The cubic splines are
optimally computed to lie as closed as possible
to a terrain by solving a nonlinear programming
problem that minimizes the deviation from the set
clearance of the terrain but satisfying all the prac-
tical constraints. The issue of generating smooth
trajectory by using cubic splines is also addressed
by (Funk, 1977) where the constraints are only
enforced to satisfy at the node points that corre-
spond to the optimization parameters. So regions
between these nodes are unconstrained which may
create safety problems for the vehicle. This safety
issue can be improved by increasing the optimiza-
tion parameters but then computational time also
increases. The trajectory generated by using our
approach considers both these issues and produces
a safe, computationally efficient trajectory using
a small number of optimizing parameters. In this
way a series of range segments, each containing a
cubic polynomial that gives altitude as a function
of range, is obtained. This approach has following
advantages:
• Trajectory is smooth enough and therefore

an actual autonomous vehicle can follow it
precisely.

• All constraints are well satisfied.
• Full terrain masking over all portions of the

terrain.
The Paper is organised as follows: Section 2 is
concerned with problem formulation, including
performance measure and constraints. A brief de-
scription of Markov Model of terrain generation
(Kuchar, 2001) is given in Section 3 where the ter-
rain data for a TF problem is generated and used
in simulation experiments. Section 4 describes two
TF algorithms in details while simulation results
and comparison are given in Section 5. Conclu-
sions are given in Section 6.

2. PROBLEM DEFINITION AND
FORMULATION

The terrain following problem that is stated gen-
erally in the previous section will now be defined
in more detail. The trajectory generation process
consists of two phases namely take-off phase and
low-altitude phase. In take-off phase, trajectory is

designed using nonlinear programming techniques
with nonlinear simulation that optimizes some
performance index. In low-altidue phase, trajec-
tory generation process consists of two stages.
Terrain avoidance is the first stage which sets tra-
jectory in lateral direction that avoids obstacles.
Once trajectory has been set in lateral direction,
the second stage is the terrain following. In this
stage, trajectory is designed in vertical direction
using terrain data and vehicle constraints. This
paper concentrate on this stage and assumes that
input data is available in range and height. Dif-
ferent performance measures in different situation
can be selected. Here the performance measure is
total error over the entire range and is defined as

J =

RN∫

R0

e2dR (1)

where R0 and RN are first and last points of
discrete range data and e is error i.e difference
of actual and reference altitudes that is, e = h −
T − Cmin and h is actual height , T is terrain
altitude and Cmin is minimum ground clearance.
The constraints of the problem are on error e and
on first, second and third derivatives of height
with respect to range. They are error e, slope s,
curvature k and kink p.
Speed of UAV during low-altitude phase is as-
sumed constant and so the rate of ascend and
descend is expressed by s = dh

dR or
dh
dt

V . Therefore
the slope constraint is

smin ≤ s ≤ smax (2)

Curvature or the normal acceleration can be ex-

pressed by k = ds
dR or k =

d2h
dt2

V 2 and is bounded
as

kmin ≤ k ≤ kmax (3)

kink or jerk is defined by p = dk
dR or p =

d3h
dt3

V 3

and is bounded as

pmin ≤ p ≤ pmax (4)

Finally the bound on error is

e ≥ 0 (5)

The objective function (1) is function of height
h which is to be minimized subject to constraints
(2-5). The curvature k and the kink p are in range
domain and analogous to normal acceleration and
jerk in time domain.

3. MARKOV MODEL OF TERRAIN

There are several options and methods to model
a terrain field. For a random terrain generation,
Markov model as described in (Kuchar, 2001)
can be used to generate a random terrain data.



Table 1. Fitted autocorrelation function parameters

Terrain Type σ τ0 β

Smooth 79 458 2.2× 10−3

Moderately smooth 269 1551 6.4× 10−4
Moderate 342 773 1.3× 10−3

Moderately steep 415 492 2.0× 10−3

Steep 1007 1633 6.1× 10−4

Markov model is a statistical model which can be
used for description and generation of a terrain.
Markov model involves representing terrain alti-
tude as a stochastic process from which statistics
of a terrain can be measured and used to create
the terrain profile. Here is used Guass- Markov
process to generate a terrain data. A wider range
of terrain types can be generated by Guass-
Markov process. Consider a discrete time Markov
process that has taken values h0, h1, . . . , hn up to
present time n . It is the property of first Markov
process that the probability of the next value in
the sequence depends upon only the most recent
value. A discrete time Markov process can be
generated by equation

hi+1 = e−βhi + εi (6)

It is Guass-Markov process when εi is a zero
mean normally distributed random variable with
variance σ2(1 − e−2β). σ is standard deviation of
terrain altitudes in the sample and β = 1

τ0
where

τ0 is length scale. Five types of terrain profiles
namely smooth, moderately smooth, moderate,
moderately steep, steep can be generated. The
function parameters for the fitted autocorrelation
function for each terrain category are σ, τ0 and β
shown in Table 1.
Using these parameters, a random terrain profile
of any above described types can be generated
with Eq.(6). This is a reasonable method by which
terrain can be generated and handled probabilis-
tically and compactly.

4. TF ALGORITHMS

Two terrain following algorithms are described
here in detail.

4.1 Stair Algorithm

It is a simple and computationally fast algorithm.
Different parameters are required as input to the
Stair Algorithm and before listing some of these
parameters need a little explanation. In actual
practice terrain altitude vs range data is taken
from DEM but here it will be generated from
Markov model. Total range is divided into small
patches and algorithm processes height of these
patches according to imposed constraints. Two di-
mensional trajectory obtained from terrain avoid-
ance procedure might involve no turn throughout,
single turn or multiple turns and the rate of ascend
and descend are different for turning and without

turning phases. Therefore it is necessary to con-
sider these different rates and for this turning start
and end range points should be provided. In order
to avoid discontinuities between take-off phase
trajectory and low-altitude phase trajectory, the
first leg is fixed at an altitude where take-off phase
ends. For a smooth transition from descend to an
ascend, a descend-ascend gap is selected according
to vehicle dynamics. The inputs to the algorithm
are:
• Terrain altitude vs range data
• Minimum ground clearance
• Desired patch length for range
• Rate of ascending and descending without

turning
• Rate of ascending and descending with turn-

ing
• Descend-Ascend gap
• Take-off phase end height
• Constant low-altitude speed
• Turning start points
• Turning end points
• Minimum vertical gap between consecutive

patches to merge as single patch
The procedure of Stair algorithm consists of the
following steps:
Step 1 Total range is divided into equal intervals

that are equal to patch length ∆R and also
the corresponding altitude data is collected for
each patch except for the first patch whose
altitude is taken constant and is fixed at take-
off end height. Find the maximum altitude in
each interval hmax

i and set patch altitude for
all patches except for first patch at

hi = hmax
i + Cmin (7)

Collect all h0, h1, . . . , hn and find differences of
these altitudes as

dhi = hi − hi−1 (8)

When dhi is positive the vehicle is in ascending
mode and vehicle is moving higher in order
to avoid any interaction with terrain. Similarly
when dhi is negative the the vehicle is in ascend-
ing mode is going down to reduce unnecessary
altitude as shown in Figure 1.

Step 2 In ascending case, select nodes as the first
point of the next patch and last points of the
current patch while descending.

Step 3 For up-stair find intersection point of a
line,passing through node point and has ascent
slope,with previous patch segment. If it is not
on this segment go to the next previous one
and continue this until find an intersection point
within segment.This point is ascent start point.
Collect all ascent start points for up stair and
embed them with node points in order. If it
is not on first patch then it is not possible to
design low-altitude phase path for the given
take-off phase trajectory because the first leg
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Fig. 1. Terrain Clearance of 300 m for 10 km patch
length.

altitude at take-off phase end height is fixed.
In this case one need to change either take-off
trajectory or UAV start location.

Step 4 For down stair find intersection point
of a line passing through node point and has
descent slope with next patch segment. If it is
not on this segment go to the next one and
continue this until find an intersection point
within segment. This point is decent stop point.
Collect all descent stop points for down stair
and embed them with node points. In this
way, node list changes which have deleted some
node points and at the same time have added
ascent start points and descent stop points in
increasing horizontal range order.

Step 5 In a valley, scenario becomes complex and
two situations are likely to appear. It might
happen that descent stop point having higher
range is embedded first while ascent start point
having lower range is embedded later in the
node list as shown in Figure 2. In order to avoid
such a situation and also to leave a descend-
ascend gap, the following procedure is adopted:
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Fig. 2. Reference path calculation in an descend-
ascend gap when slope intersect above bot-
tom.

In Figure 2, (R1, h1), (R2, h2), (R3, h3), (R4, h4)
and the gradients tan θ1, tan θ2 are known. Also
b = R2 −R3 and

H1 = c× tan θ1 ⇒ c =
H1

tan θ1

H1 = d× tan θ2 ⇒ d =
H1

tan θ2

⇒ b = c + d =
H1

tan θ1
+

H1

tan θ2
(9)

⇒ H1 = b× tan θ1 × tan θ2

tan θ1 + tan θ2
(10)

and H2 is calculated as

H2 = hg × tan θ1 × tan θ2

tan θ1 + tan θ2
(11)

Hence new node points (Rnew
2 , hnew

2 ), (Rnew
3 , hnew

3 )
can be found as

Rnew
2 = R2 − H1 + H2

tan θ2

hnew
2 = h2 + (H1 + H2)

Rnew
3 = R3 +

H1 + H2

tan θ1

hnew
3 = h3 + (H1 + H2)

(12)

Old node points (R2, h2), (R3, h3) are replaced
with new node points (Rnew

2 , hnew
2 ), (Rnew

3 , hnew
3 )

in the node list.
Step 6 Second situation occurs when Descend-

Ascend gap exists in a valley but is less then
given value hg. Raise decent stop and ascent
start point up on their slope lines by using
trigonometry as shown in Figure 3. Again b =

Hg

H H
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Fig. 3. Reference path calculation in an descend-
ascend gap when slope intersect below bot-
tom.

R3 − R2, c = H
tan θ2

, d = H
tan θ1

and it can be
seen from Figure 3 that

Hg = b + c + d = (R3 −R2) +
H

tan θ2
+

H

tan θ1
(13)

Hence H can be found as

⇒ H = (Hg −R3 + R2)× (tan θ1 × tan θ2)
tan θ1 + tan θ2

(14)

and new node points are

Rnew
2 = R2 − H

ns
, hnew

2 = h2 + H

Rnew
3 = R3 − H

ps
, hnew

3 = h3 + H

(15)



Remove old node points and embed new node
points in the data.

Step 7 Find the intersection of a line formed by
using target coordinates and decent slope with
a patch starting from target and if intersection
is not on this patch continue to the previous
patch until an intersection point is found within
a patch length. and stop when we get a point on
one of the patches. This intersection point is de-
cent start point toward target. Delete all other
node points between this intersection point af-
ter the target.

This reference path generated considered slope
constraint and other constraints can be imple-
mented indirectly by using filters. Next a cubic
spline algorithm will be described that implement
all constraint at a time using sequential quadratic
programming. The purpose is to compare the per-
formance and speed of both approaches to find
their effectiveness.

4.2 Cubic Spline Algorithm

Cubic splines (Hoffman, 2001) are third de-
gree polynomials that connect each pair of data
points. Each data interval contains its own poly-
nomial that is determined by minimizing an ob-
jective function that is subjected into given con-
straints.For continuity and drivability, the value
of the neighboring splines at each interior data
point and also their first derivative (slope) and
second derivative (curvature) are taken equal. In
this way a smooth curve is obtained containing all
data points. Here range R is divided into N subin-
tervals of equal length ∆R as shown in Figure 4.
So N + 1 are the total data points and N − 1 are
interior points. Let Hi : hi(R) = aiR

3 + biR
2 +

ciR + di defines a cubic spline in the ith interval
Ri ≤ R ≤ Ri+1. The spline is optimally computed
to lie as close as possible to the terrain and yet
to satisfy the practical constraints. Optimizing
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Fig. 4. Range partioning for cubic spline.

parameters are the altitudes h1, h2, . . . , hN−1 at
the knot points. The altitudes h0, hN and also the
gradients at h1, hN−1 are fixed and do not change
during optimization process. The constraints are
forced to satisfy not only at optimizing parameters

but also at each given data point and thus making
this approach different from the approach given in
(Funk, 1977). This will speed up the optimizing
process and also at the same will guarantee safety.
Mathematically constraint can be written as

hi−1(Ri) = hi(Ri) (16)
d

dR
hi−1(Ri) =

d

dR
hi(Ri) (17)

d2

dR2
hi−1(Ri) =

d2

dR2
hi(Ri) (18)

Initial condition of slope on first spline and final
condition of slope on last spline are

d

dR
h0(R1) = s0 (19)

d

dR
hN−1(RN−1) = sN (20)

The coefficients of cubic polynomials can be de-
termined by using Equations(16-20) and these
ai,bi,ci,di are function of altitude h1,h2,. . .,hN−1.
The optimization problem is to minimize (1) sub-
ject to constraint (2-5) and (16-20). Initial guess
of optimization parameters is provided and coef-
ficients of fitted cubic polynomials are found for
each interval by solving a system of linear equa-
tions. Optimization problem is nonlinear and dif-
ferent algorithms can be used to solve it. Sequen-
tial Quadratic Programming (SQP) (Betts, 2001)
is used to optimize the test examples. An SQP
method obtains search direction for a sequence
of quadratic sub (QP) problems. Each QP sub
problem minimizes a quadratic model of a certain
Lagrangian function subject to linear constraints.
A quadratic approximation to the Lagrangian and
linear approximation to the constraints is made by
using Taylor series. A QP problem is to minimize
the quadratic objective function

F (h) = gT h +
1
2
hT Hh (21)

subject to linear equality and inequality con-
straints.

Ah = a (22)

Bh ≥ b (23)

Where H is positive definite Hessian matrix. The
quadratic objective function is minimized by solv-
ing the KKT system of equations
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Where B̃ is the Jacobin matrix of those inequality
constraints which are satisfied as equalities and

ḡ = gT h + Hh

ā = Ah− a



¯̃
b = ¯̃Bh− b

Cubic Spline algorithm proceeds as follows:
Step 1 Give initial guess of altitudes at knot

points.
Step 2 Call SQP that will find the optimized

parameters by repeatedly solving QP sub-
problems for modified hessian and jacobins of
both equality and active inequality constraint.

5. SIMULATION RESULTS AND
COMPARISON

Both algorithms were tested extensively and the
simulation results are shown in Figures (5-7). It
has been found that SA is computationally very
efficient and can be used for all types of trains but
CSA shows little convergence problems for steep
terrains which are common for nonlinear pro-
gramming techniques. Therefore, the comparisons
for both algorithms are made using smooth and
moderate-smooth types of terrains that are gen-
erated by Markov model. One hundred terrains
are randomly generated for each type of terrain
and performance index (area between optimized
trajectory and terrain) is calculated for patch
lengths of 5km, 10km and 20km and is shown in
Figure 6. The bar graph in Figure 6 shows almost
equal performance for same patch length. Stan-
dard deviation of performance index for different
patch lengths in 100 trials is also shown in Figure
7. It reveals that standard deviation increases in
both algorithms by increasing patch length and
is almost equal for same patch length. Figure 5
shows trajectories for both CSA and SA for a
particular case when terrain is taken from Markov
model for 200 km range and patch length is fixed
at 4km. This shows that the constraints are well
satisfied and are within the desired limits.
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Fig. 5. Optimal trajectory for 160 km range

6. CONCULSION

Two approaches for terrain following of an au-
tonomous vehicle were presented. Both approaches
assume that a two dimensional path is available in
advance that has been calculated by using a suit-
able terrain avoidance technique. Stair algorithm

Fig. 6. Mean Area in 100 trails for CSA and SA

Fig. 7. Standard Deviation in 100 trails for CSA
and SA

is fast and computationally efficient for terrain
following that can be used online if a forward
looking sensor in combination of digital elevation
map is used and also easy to implement in a
simulation. Cubic spline find an off-line trajectory
that is smooth enough to be followed precisely by
an actual autonomous vehicle and all constraints
are well satisfied and perfect terrain masking over
all portions of the terrain is possible. Statistical
analysis shows that the standard deviation in per-
formance index data is lesser in case of stair as
compare to cubic spline algorithm.
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