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Abstract

This work presents a nonlinear identification approachlisteohydraulic servovalves, common in aerospace
actuation systems. The methodology is based Geiaetic Algorithmwhich the cost-function is related to

the error between the identified model and the real systera.nféthod searches the linear and nonlinear
parameters such that the cost-function above reach a mimivalue, what implies that the model is close

to the real system. The approach is validated through stionleesults of a known servovalve model.

1. Introduction

Electrohydraulic servovalves (EHSV) are widely appliedioear and angular servomechanisms, and the knowledge
of its dynamics is essential to control system design. $¢vesrks cover the aspects about EHSV’s, showing internal
moving parts, its motion equations and the most importantinearities*® Servovalves are specially useful as the
main actuator element of aerospace systems; particularlgunchers it operates like in the thrust vector control
actuation for solid propelled vehicle or in gimballed chamfor liquid propelled rockets. Since their influence over
the aerospace vehicle control loops, a precise modellingH$V linear and nonlinear behaviours is primary to a
proper launcher performance.

The genetic algorithm (GA) use evolution ideas taken of titeire in optimisation processes. There are excellent
references about this approcéhhat present the computational details and applicatiorthodgh the genetic algo-
rithm is extensively used in optimisation, some works hageussed it for identification purpose. The most used idea
is comparing the real input-output signal with those ol#dihy the estimated model, where the GA is used to tune the
model parameters until that an behaviour similar to the sgstlem is reachetiThis approach does not need linearity
over the parameters andi@irentiability of the functional to be optimised — both argoorant issues in kest-squares
methodology. In an identification procedure, the GA has theaatage of direct model simulation, since the present
simulation model facilities provided by tools like Mathvisi Simulink®.

For the identification of nonlinear systems, the use of geadgorithm is particularly attractive because a formal
formulation that relates the model parameters with a odtptional is very hard to find. There are some interesting
applications in the literature like a 2-mass resonant vidbanasystem, a parameter identification of a exciting power
system and nonlinear identification by Volterra filtering® Some hybrid evolutionary recursive methods are also
proposed.

In this paper, an approach for identification of nonlineanapace servovalves based on genetic computation is
presented. The theory involved with hydraulic servovalsescussed as well the necessary assumptions to the system
identification. Finally the methodology is applied to thentieear identification of a hydraulic servovalve model with
known parameters.

2. Electrohydraulic servovalves modelling

The EHSYV consists of a powerful component in control systérasjoints the versatility of electrical components with
hydraulic actuators performance at high power levels. imway, several dynamicfiects are present and one should
pay attention to some details in the modelling procedure.
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2 ELECTROHYDRAULIC SERVOVALVES MODELLING

2.1 Turbulent orifice flow and linearised analysis of valves

The turbulent flow through an orifice occurs at high Reynolgimber and is modelled applying the Bernoulli's equa-
tion. This analysis yields the following well-known volutrie flow rate:

Q = CaAoy /;(Pl - P2) 1)

whereCy is the discharge cdicient, Ay the orifice aregp the mass density of fluid and{ — P,) the pressure drop.
Considering a typical four-way spool valve where the orificeas depend on valve geometry, their four areas are
functions of valve displacement,. The load flow as a function of valve position and load presssigiven by the
nonlinear relation

QL = Qu(x, PL) (2)

known as thepressure-flow curveand is a complete description of steady-state valve pedoo®. This nonlinear
algebraic equation is linearised to dynamics analysisiguaiconcatenated Taylor’s series about a particular dpgrat
condition. Thus the linearised equation on Laplace’s motdtecomes

QL(S) = Koxy + KcPL (3

whereKq andKc are the most important parameters and are obtainedieyetitiation of the equation for the pressure-
flow curves or graphically from a plot of the curves, as présgim figure 1, that shows them in a normalised mafiner.
The flow gain is defined biKg = 9Q /0%, and the flow-pressure cigientKc = —9Q./0PL. The load flow equation
is given as follows, considering an ideal critical centrivga

1 X
Q= Cyqwx 4[=(Ps — —P1) (4)
4% Xyl

wherePs is the supply pressure to valve.
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Figure 1:Normalised pressure-flow curves.
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2.2 Flow forces on spool valves

The fluid flowing through uncompensated valve orifices cafmess with a direction such that it tends to close the
valve port. The magnitude of this force is given by:

F1 = 2C4CyAg(P1 — P2)cogp) %)

where, typicallyy ~ 69 is the jet angle of vena contractgy = 0.61 the discharge céiécient,C, = 0.98 the empirical
factor calledvelocity cogficientand AP = P; — P, the pressure drop. Considering the area gradient of thevalv
w = 0A/dx,, [wW] = m?/m, and the numerical values above yields the usual form ofttredy-state flow force equation:

F1 = 0.43WAPX, = K X,. (6)

Merritt® comments that on larger single stage EHSV (four-way, diameter spool, 020n. stroke, andPs =
1000psi this force can exceed RD(9kgf). The reduction of this steady-force flow force can be oladinsing two-
stage configuration or using geometric compensating tgdesi These compensations can lead to nonlinear flow force
versus stroke characteristic.

2.3 Continuity equation

The fundamental laws and the complete fluids flow equatiomtharbasis to the complete knowledge for the hydraulic
modelling and identification process. Mathematical motiethe three directions of motion are obtained from Navier-
Stokes equations and law of conservation of energy. Theamotyt equation combined with the equation of state
(0 = p(P, T)) leads to the following expression, in Laplace’s notation

> Q09 = s{ve + 7 ™

whereg is the Bulk modulus (for mineral oils and for common valuesgdessure and temperatugas typically 1400
to 1600 MPa). The equation above is the general form withatdgichamber volume. In the case of const4rieads

o VcP
C

= S— 8

>, QA9 =5 ®)

whereV¢ /g is equivalent to a linear hydraulic capacitance, know@gsin case the EHSV is mounted directly on the
actuator and the high pressure lines af@aently short, then the hydraulic capacitance can be censibnegligible.

Using all equations above, one can express the EHSV modebassn block diagram in figure 2. In this model,
the linear transfer function expresses the feedback diarttbat, in a electrohydraulic servovalve, is implemehby
electronic circuitry. The load is composed by a mass-spyrstem.
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Figure 2:EHSV block diagram
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3. Genetic Algorithm and Nonlinear Identification

In this section, a brief discussion about the genetic allgor$ as well its application for optimisation are discussed
After, it will be presented a methodology to use the gengpitnaisation for the identification of nonlinear systems.
The method will be validated by applying it for the Van der Bgpétem identification.



3 GENETIC ALGORITHM AND NONLINEAR IDENTIFICATION

3.1 The Genetic Algorithm

The Genetic Algorithms are optimisation processes based on evolution ideas tdkére mature. Then, the GA's
are characterised by the evolution of an initial set of $oh#, namedgopulation according to stochastic rules that
lead the actual population to the next, igenerationsequence. Dlierent of other optimisation processes, the genetic
algorithm works with many candidate solutions chosen rarigan a search space defined by the user. The user can
select the number of solutions used on the optimisatioe@abpulation lengthor Ny, and the maximum number
of generationdNge, before the process.

This population is coded such that thenetic operationbelow can be applied. Basically, there are two ways of
codification: the binary codification where each solutionaded by a binary code with a previous-defined number of
bits, and the real-polarised code where each solution iscadcording to a proper real equation relationgHipthis
paper, the last codification is adopted.

A set of operations over the coded elements were developdtkat the population evolution is similar to the
evolution of a colony in the nature. The basic GA operatiaes a

i crossover it combines the informations contained in two or more eletsesuch that new solutions are created.
This operator is useful to guide the population for a possibbal minimum after some generations;

i mutation a new solution is created by using a stochastic rule to mpaatif element. The mutation operator
guarantees the diversity of solution set. Then, new regiotise search region can be explored,;

iii selection some elements are replicated and continue to the nextag@renccording to a fitness function. The
others are discarded;

iv elitism: if the best solution is not selected to the next generatiaan be inserted by replacing another element
that is chosen randomly.

The genetic optimisation applies the operatigrisover the initial population. Then a cost-function assaadb the
functional minimum proximity is evaluated and each eleniennarked. According to their marks, the operations
iii andiv select the elements to the next generation and new elenrentaralomly added if is necessary. After each
generation a stop test is performed. The algorithm is finigizse the solutions arefiaiently close of the minimum or
the maximum generation number is reached, otherwise the ganetic operations are applied over the new population
and so on. This method results in the convergence of the atipuito the functional minimum after some generations.

The pseudo-code below summarises the optimisation proeedu
Choose an initial parameter set S(x) with length Npop

for i = 1 to Ngen {

Apply a codification over S(x);

Execute the crossover and mutation operations;

Evaluate a cost-function related to the functional to be minimised;
Execute the selection and elitism operations to produce the new S(x);
If it is necessary, add new random elements to S(x);

Execute the stop test;

}

The best element of S(x) is the solution of the optimisation procedure.
3.2 Identification of Nonlinear Systems

In this section, it will be presented the use of genetic algors for identification purpose. The idea is similar to an

optimisation process and can be seen better in the Figur@galforithm produces an initial model set by choosing
a population of parameters, and then each model is simubdthdhe same input signal applied over the real system.
After, a cost function related to the error signe) between the model output and the real system is computeel. Th
cost function used on this paper is the error signal normiesged by

T final
J= e (t)dt, (9)
0
whereTiing is the simulation final time (same of the experimental daf&ge cost function values are used by the ge-
netic algorithm to produce a new parameter set, based oretietig operations yet discussed. After some generations
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Figure 3:Flowchart of genetic algorithm used to the nonlinear identification

the optimisation converges to the best set of parametersthatthe error between the model and the system have the
slower norm; this produces the best model, obviously lichitethe chosen model structure.

A known model should be used to validate the identificatiomcpdure. For this purpose, it was chosen the
following Van der Pol oscillator.

Xl = aXy
% = =X+ y(1 - X8)x; + u (10)
y=X1+¢

wherea = 0.96, y = 1.23 andu is a pseudo random signaPRS. This signal is closely related to the traditional
pseudo random binary signallsut with a random amplitude too; the amplitude variatioimportant to detect system
nonlinear &ects that can be hidden if only a fixed amplitude was used. f$ters with these conditions was simulated
and the outpuy was corrupted by a mean zero gaussian measurementndike obtained signals are used to emulate
an experimental data and are applied to ¢handy genetic identification witiNgen = 50 andNpop = 100. Two

measurement gaussian noises with varian®® @nd 01 respectively are used and the results are presented in the
table 1.

Table 1:Genetic identification of the VVan der Pol oscillator.

Noise Variance| & y
0.05 0.9606 | 1.2345
0.1 0.9307 | 1.1337

Note that thea andy estimated values were very similar to the real ones when th@sorement noise has
variance (05. More significant dferences occur when a harder measurement noise is usede lbtiel response is
yet close to the expected model, as shown in the figure 4.

The results above confirm the genetic algorithificeency for nonlinear identification even in a noisy scenario
Despite of this, one should pay attention to some detailthfrdentification success.

i) The Model Structurés the most important factor for a good identification. In &xample, it was used the exact
equations that represent a Van der Pol oscillator. Obwpsaime results are not reached if other mathematical



4 SIMULATION RESULTS
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Figure 4:Identification of the Van der Pol oscillator. The experimental signal isupted by a gaussian noise with variancé 0
Note that the model has a proper behaviour.

formulation was used, what suggest a previous study of tstesybefore the identification. If this is not possible,
it can be necessary somgat to obtain an equation set that represent the system appately.

ii) The parameters search spasanother source of problems. The question is ‘in whichaegine should search
the parameters?’ or better ‘which the interval should bedietl for each parameter during the search?’ The
immediate answer would be ‘bigger as possible’ but this emwlt in slow parameter convergence and model
stability problems. The best approach is selecting theviate based on previous system knowledge or through
a trial-and-error procedure for a completely unknown syst€areful should be also taken with the number of
parameters to be identified, since that the search spacasiionedfects the parameter convergence.

4. Simulation Results

This section presents the simulation results of the noafingentification applied to the servovalve case. The AG
algorithm runs in the Matl&b and the model simulation is constructed based on Sinf8llsikck diagram. The “real”
signals are obtained by previous simulation of the known eh@dth output corrupted by a gaussian measurement
noise with proper variance. These informations are uselkindentification process as follows.

In a real situation when the user has a mounted servovalheavkihown load, the identification procedure begins
with tests to collect the output signals, that represensyiséem behaviour. After, a reasonable nonlinear repratent
that includes the most important linear and nonlinggeats should be assumed, resulting in a model structure éor th
optimisation process. Finally, a computational procedsinmplemented to apply a genetic optimisation to identify t
unknown parameters. Particularly for this paper, a knowdehis assumed and then the approach validity is tested.

The model used in the genetic identification was presentdijime 2, and the hypothetical parameter set is
presented on the table 2. Pseudo Random Signadas used to excite the system and then one can collect thatoutp
signal to be used in the identification process.

At this stage, one has already the complete structure ofith#ification problem including the chosen nonlinear
block diagram, the parameters to identify, etc. At the dfeservovalve case, a proper block diagram to be used
in the identification process is presented in figure 2. It aimstconstant parameterthat are assumed known. This
parameters are the cross section of valve pisten25x 10“n?, the supply pressui; = 140bar, and the load system
described by its massl = 20kg and the spring constait = 1 x 10*°N/m. The codficients to be identified are the
feedback parameter6¢, ¢ andw), the hydraulic constar = Cqw/ 4/p and the nonlinearities expressed by the spool
dead zone and saturation.

A gaussian measurement noise with threffedént variances was added to the signal to become the siomulat
example more realistic. The genetic optimisation parareetere selected ad pop = 50 andNGen= 20 and the
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interval search for each cfiient was chosen around 50% of its known value. These irtsiake important influence
in the algorithm convergence in a real identification, sinet tepeated optimisations can be necessary to theirieelect
The results of the genetic identification in these condgiare presented on the table 2.

Table 2:Genetic identification of the servovalve system.

dead zone (m) saturation (m)[ H ((m*/kg)¥?) | G¢ (mym) £ w (rad’s)
Real 1x10* 3x 1073 1x107° 0.09 0.72 300
Variance 1x 1078 9.92x107° 3.0x10°° 141x10% 0.0919 | 0.6647 | 29635
Variance 1x 1077 9.21x10° 20x 102 14x107% 0.0872 | 0.7418| 3276
Variance 1x 107° 12x107° 38x10° 158x 1074 0.0909 | 0.7145| 26593

This table shows a good convergence, but some parametevstsbti more sensitive to the measurement noise.
Despite of this, the modelled and “real” systems have a vienilar behaviour, as can be seen in the figure 5 even in a
so noisy environment like in the right figure.
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Figure 5:Genetic Identification of the known servovalve model. The left figursgmts the results for a measurement noise with
variance 1x 1077. In the right, the noise variance is<110-°.

5. Conclusions

This paper presented a methodology for nonlinear identificebased on genetic optimisation. The objective is ob-
taining a nonlinear model for electrohydraulic servovalveery common in control loops of aerospace vehicle like
aircrafts and launch vehicles. The EHSV has important nealiities that can become its behaviour quitéedént of

a traditional linear models. So, a proper nonlinear idexaifon procedure is primary to control purpose.

The nonlinear identification with genetic algorithms waplaga in a hypothetical servovalve with known param-
eters. It was supposed that the system canfieeted by three dierent levels of measurement noise, used to validate
the approach in a real modelling situation. In all cases,dpatified parameters presented good accordance to the
known values, even in the worst noise environment as candreisghe figure 5.

Obviously, the procedure needs improvements. Some gitfare found in algorithm convergence due to the
EHSV structure adopted, were the load is written as a dérevééedback. This brings a lot of problems with the
differential equation solver such that the integration metimaidfae simulation step must be selected carefully. Overall,
variable-step integration should be avoided. Other prabtjuestion is related to the solution space search thatatan
be much wide to avoid slow convergence to the correct valfifse user doesn’t have previous knowledge of the size
of the space search, a cut-and-try procedure can be uséd pntiper space is found.
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The next step will be studying the method use for the modeitifieation of a real servovalve benchmark, similar
to common aerospace actuation systems. We believe thgbpineaech will present good performance, overall after the
improvements discussed above.
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