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Abstract
This work presents a nonlinear identification approach for electrohydraulic servovalves, common in aerospace
actuation systems. The methodology is based on aGenetic Algorithmwhich the cost-function is related to
the error between the identified model and the real system. The method searches the linear and nonlinear
parameters such that the cost-function above reach a minimum value, what implies that the model is close
to the real system. The approach is validated through simulation results of a known servovalve model.

1. Introduction

Electrohydraulic servovalves (EHSV) are widely applied onlinear and angular servomechanisms, and the knowledge
of its dynamics is essential to control system design. Several works cover the aspects about EHSV’s, showing internal
moving parts, its motion equations and the most important nonlinearities.4,6 Servovalves are specially useful as the
main actuator element of aerospace systems; particularly in launchers it operates like in the thrust vector control
actuation for solid propelled vehicle or in gimballed chamber for liquid propelled rockets. Since their influence over
the aerospace vehicle control loops, a precise modelling ofEHSV linear and nonlinear behaviours is primary to a
proper launcher performance.

The genetic algorithm (GA) use evolution ideas taken of the nature in optimisation processes. There are excellent
references about this approach7,8 that present the computational details and applications. Although the genetic algo-
rithm is extensively used in optimisation, some works have discussed it for identification purpose. The most used idea
is comparing the real input-output signal with those obtained by the estimated model, where the GA is used to tune the
model parameters until that an behaviour similar to the realsystem is reached.2 This approach does not need linearity
over the parameters and differentiability of the functional to be optimised – both are important issues in alest-squares
methodology. In an identification procedure, the GA has the advantage of direct model simulation, since the present
simulation model facilities provided by tools like Mathworks’ Simulink©.

For the identification of nonlinear systems, the use of genetic algorithm is particularly attractive because a formal
formulation that relates the model parameters with a outputfunctional is very hard to find. There are some interesting
applications in the literature like a 2-mass resonant vibration system, a parameter identification of a exciting power
system and nonlinear identification by Volterra filtering.1,3,9 Some hybrid evolutionary/ recursive methods are also
proposed.5

In this paper, an approach for identification of nonlinear aerospace servovalves based on genetic computation is
presented. The theory involved with hydraulic servovalvesis discussed as well the necessary assumptions to the system
identification. Finally the methodology is applied to the nonlinear identification of a hydraulic servovalve model with
known parameters.

2. Electrohydraulic servovalves modelling

The EHSV consists of a powerful component in control systemsthat joints the versatility of electrical components with
hydraulic actuators performance at high power levels. In this way, several dynamic effects are present and one should
pay attention to some details in the modelling procedure.
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2 ELECTROHYDRAULIC SERVOVALVES MODELLING

2.1 Turbulent orifice flow and linearised analysis of valves

The turbulent flow through an orifice occurs at high Reynolds number and is modelled applying the Bernoulli’s equa-
tion. This analysis yields the following well-known volumetric flow rate:

Q = CdA0

√

2
ρ

(P1 − P2) (1)

whereCd is the discharge coefficient,A0 the orifice area,ρ the mass density of fluid and (P1 − P2) the pressure drop.
Considering a typical four-way spool valve where the orificeareas depend on valve geometry, their four areas are
functions of valve displacementxv. The load flow as a function of valve position and load pressure is given by the
nonlinear relation

QL = QL(xv,PL) (2)

known as thepressure-flow curvesand is a complete description of steady-state valve performance. This nonlinear
algebraic equation is linearised to dynamics analysis, using a concatenated Taylor’s series about a particular operating
condition. Thus the linearised equation on Laplace’s notation becomes

QL(s) = KQxv + KCPL (3)

whereKQ andKC are the most important parameters and are obtained by differentiation of the equation for the pressure-
flow curves or graphically from a plot of the curves, as presented in figure 1, that shows them in a normalised manner.6

The flow gain is defined byKQ ≡ ∂QL/∂xv and the flow-pressure coefficientKC ≡ −∂QL/∂PL. The load flow equation
is given as follows, considering an ideal critical centre valve:

Q = Cdwxv

√

1
ρ

(PS −
xv

|xv|
PL) (4)

wherePS is the supply pressure to valve.

Figure 1:Normalised pressure-flow curves.
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2.2 Flow forces on spool valves

The fluid flowing through uncompensated valve orifices causesforces with a direction such that it tends to close the
valve port. The magnitude of this force is given by:

F1 = 2CdCvA0(P1 − P2)cos(θ) (5)

where, typicallyθ ≈ 69◦ is the jet angle of vena contracta,Cd = 0.61 the discharge coefficient,Cv = 0.98 the empirical
factor calledvelocity coefficient and∆P = P1 − P2 the pressure drop. Considering the area gradient of the valve,
w ≡ ∂A/∂xv, [w] = m2/m, and the numerical values above yields the usual form of the steady-state flow force equation:

F1 = 0.43w∆Pxv = K f xv. (6)

Merritt6 comments that on larger single stage EHSV (four-way, 1in. diameter spool, 0.020in. stroke, andPS =

1000psi this force can exceed 20lb (9kg f). The reduction of this steady-force flow force can be obtained using two-
stage configuration or using geometric compensating techniques. These compensations can lead to nonlinear flow force
versus stroke characteristic.

2.3 Continuity equation

The fundamental laws and the complete fluids flow equations are the basis to the complete knowledge for the hydraulic
modelling and identification process. Mathematical modelsto the three directions of motion are obtained from Navier-
Stokes equations and law of conservation of energy. The continuity equation combined with the equation of state
(ρ = ρ(P,T)) leads to the following expression, in Laplace’s notation

∑

Q(s) = s

(

Vc +
VCP
β

)

(7)

whereβ is the Bulk modulus (for mineral oils and for common values for pressure and temperature,β is typically 1400
to 1600 MPa). The equation above is the general form with variable chamber volume. In the case of constantVc leads
to

∑

Q(s) = s
VCP
β

(8)

whereVC/β is equivalent to a linear hydraulic capacitance, known asCH. In case the EHSV is mounted directly on the
actuator and the high pressure lines are sufficiently short, then the hydraulic capacitance can be considered negligible.

Using all equations above, one can express the EHSV model as shown in block diagram in figure 2. In this model,
the linear transfer function expresses the feedback controller that, in a electrohydraulic servovalve, is implemented by
electronic circuitry. The load is composed by a mass-springsystem.

Figure 2:EHSV block diagram

3. Genetic Algorithm and Nonlinear Identification

In this section, a brief discussion about the genetic algorithms as well its application for optimisation are discussed.
After, it will be presented a methodology to use the genetic optimisation for the identification of nonlinear systems.
The method will be validated by applying it for the Van der Polsystem identification.
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3 GENETIC ALGORITHM AND NONLINEAR IDENTIFICATION

3.1 The Genetic Algorithm

The Genetic Algorithms are optimisation processes based on evolution ideas taken of the nature. Then, the GA’s
are characterised by the evolution of an initial set of solutions, namedpopulation, according to stochastic rules that
lead the actual population to the next, in agenerationsequence. Different of other optimisation processes, the genetic
algorithm works with many candidate solutions chosen randomly in a search space defined by the user. The user can
select the number of solutions used on the optimisation (called population length) or Npop and the maximum number
of generationsNgen before the process.

This population is coded such that thegenetic operationsbelow can be applied. Basically, there are two ways of
codification: the binary codification where each solution iscoded by a binary code with a previous-defined number of
bits, and the real-polarised code where each solution is coded according to a proper real equation relationship.7 In this
paper, the last codification is adopted.

A set of operations over the coded elements were developed such that the population evolution is similar to the
evolution of a colony in the nature. The basic GA operations are:

i crossover: it combines the informations contained in two or more elements, such that new solutions are created.
This operator is useful to guide the population for a possible global minimum after some generations;

ii mutation: a new solution is created by using a stochastic rule to modify an element. The mutation operator
guarantees the diversity of solution set. Then, new regionsin the search region can be explored;

iii selection: some elements are replicated and continue to the next generation according to a fitness function. The
others are discarded;

iv elitism: if the best solution is not selected to the next generation,it can be inserted by replacing another element
that is chosen randomly.

The genetic optimisation applies the operationsi, ii over the initial population. Then a cost-function associated to the
functional minimum proximity is evaluated and each elementis marked. According to their marks, the operations
iii andiv select the elements to the next generation and new elements are randomly added if is necessary. After each
generation a stop test is performed. The algorithm is finished case the solutions are sufficiently close of the minimum or
the maximum generation number is reached, otherwise the same genetic operations are applied over the new population
and so on. This method results in the convergence of the population to the functional minimum after some generations.
The pseudo-code below summarises the optimisation procedure.

Choose an initial parameter set S(x) with length Npop

for i = 1 to Ngen {

Apply a codification over S(x);

Execute the crossover and mutation operations;

Evaluate a cost-function related to the functional to be minimised;

Execute the selection and elitism operations to produce the new S(x);

If it is necessary, add new random elements to S(x);

Execute the stop test;

}

The best element of S(x) is the solution of the optimisation procedure.

3.2 Identification of Nonlinear Systems

In this section, it will be presented the use of genetic algorithms for identification purpose. The idea is similar to an
optimisation process and can be seen better in the Figure 3. The algorithm produces an initial model set by choosing
a population of parameters, and then each model is simulatedwith the same input signal applied over the real system.
After, a cost function related to the error signal (e) between the model output and the real system is computed. The
cost function used on this paper is the error signal norm, expressed by

J =
∫ T f inal

0
e2(t)dt, (9)

whereT f inal is the simulation final time (same of the experimental data).The cost function values are used by the ge-
netic algorithm to produce a new parameter set, based on the genetic operations yet discussed. After some generations
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Figure 3:Flowchart of genetic algorithm used to the nonlinear identification

the optimisation converges to the best set of parameters such that the error between the model and the system have the
slower norm; this produces the best model, obviously limited to the chosen model structure.

A known model should be used to validate the identification procedure. For this purpose, it was chosen the
following Van der Pol oscillator.


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











ẋ1 = αx2

ẋ2 = −x1 + γ(1− x2
1)x2 + u

y = x1 + ξ

(10)

whereα = 0.96, γ = 1.23 andu is a pseudo random signal, PRS. This signal is closely related to the traditional
pseudo random binary signals, but with a random amplitude too; the amplitude variation isimportant to detect system
nonlinear effects that can be hidden if only a fixed amplitude was used. The system with these conditions was simulated
and the outputy was corrupted by a mean zero gaussian measurement noiseξ. The obtained signals are used to emulate
an experimental data and are applied to theα andγ genetic identification withNgen = 50 andNpop = 100. Two
measurement gaussian noises with variance 0.05 and 0.1 respectively are used and the results are presented in the
table 1.

Table 1:Genetic identification of the Van der Pol oscillator.

Noise Variance α̂ γ̂

0.05 0.9606 1.2345
0.1 0.9307 1.1337

Note that theα andγ estimated values were very similar to the real ones when the measurement noise has
variance 0.05. More significant differences occur when a harder measurement noise is used, but the model response is
yet close to the expected model, as shown in the figure 4.

The results above confirm the genetic algorithm efficiency for nonlinear identification even in a noisy scenario.
Despite of this, one should pay attention to some details forthe identification success.

i) The Model Structureis the most important factor for a good identification. In theexample, it was used the exact
equations that represent a Van der Pol oscillator. Obviously, same results are not reached if other mathematical
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4 SIMULATION RESULTS
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Figure 4: Identification of the Van der Pol oscillator. The experimental signal is corrupted by a gaussian noise with variance 0.1
Note that the model has a proper behaviour.

formulation was used, what suggest a previous study of the system before the identification. If this is not possible,
it can be necessary some effort to obtain an equation set that represent the system approximately.

ii) The parameters search spaceis another source of problems. The question is ‘in which region one should search
the parameters?’ or better ‘which the interval should be selected for each parameter during the search?’ The
immediate answer would be ‘bigger as possible’ but this can result in slow parameter convergence and model
stability problems. The best approach is selecting the intervals based on previous system knowledge or through
a trial-and-error procedure for a completely unknown system. Careful should be also taken with the number of
parameters to be identified, since that the search space dimension affects the parameter convergence.

4. Simulation Results

This section presents the simulation results of the nonlinear identification applied to the servovalve case. The AG
algorithm runs in the Matlab© and the model simulation is constructed based on Simulink© block diagram. The “real”
signals are obtained by previous simulation of the known model with output corrupted by a gaussian measurement
noise with proper variance. These informations are used in the identification process as follows.

In a real situation when the user has a mounted servovalve with a known load, the identification procedure begins
with tests to collect the output signals, that represent thesystem behaviour. After, a reasonable nonlinear representation
that includes the most important linear and nonlinear effects should be assumed, resulting in a model structure for the
optimisation process. Finally, a computational procedureis implemented to apply a genetic optimisation to identify the
unknown parameters. Particularly for this paper, a known model is assumed and then the approach validity is tested.

The model used in the genetic identification was presented infigure 2, and the hypothetical parameter set is
presented on the table 2. APseudo Random Signalwas used to excite the system and then one can collect the output
signal to be used in the identification process.

At this stage, one has already the complete structure of the identification problem including the chosen nonlinear
block diagram, the parameters to identify, etc. At the specific servovalve case, a proper block diagram to be used
in the identification process is presented in figure 2. It containsconstant parametersthat are assumed known. This
parameters are the cross section of valve pistonA = 25×10−4m2, the supply pressurePs = 140bar, and the load system
described by its massM = 20kg and the spring constantK = 1 × 104N/m. The coefficients to be identified are the
feedback parameters (Gc, ξ andω), the hydraulic constantH = Cdw/

√
ρ and the nonlinearities expressed by the spool

dead zone and saturation.
A gaussian measurement noise with three different variances was added to the signal to become the simulation

example more realistic. The genetic optimisation parameters were selected asNpop= 50 andNGen= 20 and the
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interval search for each coefficient was chosen around 50% of its known value. These intervals take important influence
in the algorithm convergence in a real identification, such that repeated optimisations can be necessary to their selection.
The results of the genetic identification in these conditions are presented on the table 2.

Table 2:Genetic identification of the servovalve system.

dead zone (m) saturation (m) H ((m3/kg)1/2) Gc (m/m) ξ ω (rad/s)
Real 1× 10−4 3× 10−3 1× 10−5 0.09 0.72 300
Variance 1× 10−8 9.92× 10−5 3.0× 10−3 1.41× 10−4 0.0919 0.6647 296.35
Variance 1× 10−7 9.21× 10−5 2.0× 10−3 1.4× 10−4 0.0872 0.7418 327.6
Variance 1× 10−5 1.2× 10−4 3.8× 10−3 1.58× 10−4 0.0909 0.7145 265.93

This table shows a good convergence, but some parameters show itself more sensitive to the measurement noise.
Despite of this, the modelled and “real” systems have a very similar behaviour, as can be seen in the figure 5 even in a
so noisy environment like in the right figure.
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Figure 5:Genetic Identification of the known servovalve model. The left figure presents the results for a measurement noise with
variance 1× 10−7. In the right, the noise variance is 1× 10−5.

5. Conclusions

This paper presented a methodology for nonlinear identification based on genetic optimisation. The objective is ob-
taining a nonlinear model for electrohydraulic servovalves, very common in control loops of aerospace vehicle like
aircrafts and launch vehicles. The EHSV has important nonlinearities that can become its behaviour quite different of
a traditional linear models. So, a proper nonlinear identification procedure is primary to control purpose.

The nonlinear identification with genetic algorithms was applied in a hypothetical servovalve with known param-
eters. It was supposed that the system can be affected by three different levels of measurement noise, used to validate
the approach in a real modelling situation. In all cases, theidentified parameters presented good accordance to the
known values, even in the worst noise environment as can be seen in the figure 5.

Obviously, the procedure needs improvements. Some pitfalls were found in algorithm convergence due to the
EHSV structure adopted, were the load is written as a derivative feedback. This brings a lot of problems with the
differential equation solver such that the integration method and the simulation step must be selected carefully. Overall,
variable-step integration should be avoided. Other practical question is related to the solution space search that cannot
be much wide to avoid slow convergence to the correct values.If the user doesn’t have previous knowledge of the size
of the space search, a cut-and-try procedure can be used until a proper space is found.
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The next step will be studying the method use for the model identification of a real servovalve benchmark, similar
to common aerospace actuation systems. We believe that the approach will present good performance, overall after the
improvements discussed above.
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