

he Future of Satellite Propulsion

Kurt Kreiner Chief Engineer & Boeing Technical Fellow Bus Products Boeing Defense Systems

Boeing Satellite Product Line

Covers a broad range of vehicle sizes and capabilities

702SP Smallsat

0.5

9m

8-10

Propulsion subsystems were developed to meet the specific requirements of each type of vehicle

702HP GEM

10-12

>12

702HP

6-10

702MP Maxsat

3.7

702MP Midsat

1.3

Copyright © 2013 Boeing. All rights reserved

Pavload Power (kW)

Phantom Phoenix

2m

Propulsion Subsystems

- Boeing's current propulsion subsystems cover a very broad spectrum
 - ->100 products
 - ->10 major suppliers
 - Six different configurations
 - N2H4 monopropellant (376, GPS)
 - NTO/N2H4 dual mode (702 MP midsat)
 - Hybrid NTO/N2H4 dual mode and arcjets (702 MP maxsat)
 - NTO/MMH bi-propellant (393, 376, 376W, 601, 601HP, 702 GEM)
 - Hybrid bi-propellant and xenon ion propulsion (702HP)
 - All electric xenon ion propulsion (702SP)

Figure 1: Historical Growth of Satellite EP for Station-Keeping³

Subsystems design trends continue towards EP solutions– Provides the maximum performance Industry trend shows a 10 X increase

Macro Assessment of Satellite Propulsion in the Future

- What are the key drivers for the future satellite propulsion subsystems?
 - Flexibility
 - Performance
 - -Cost
 - People

Propulsion Subsystem Flexibility

- Flexibility

- Spacecraft mission requirements
 - -Payload capability & performance
 - Maximum capability for a given separated mass
 - Need to provide accurate pointing performance
 - -Launch vehicle capability
 - Must maximize the capability of each launch vehicle
 - -Spacecraft life
 - Needs to meet the customer requirement with margin
 - -Incremental improvements in reliability
- Customer preferences and experiences
 - -Subsystem needs to be user friendly
 - -Technology must be sufficiently matured

Propulsion Subsystem Performance

- Performance

- Most satellite propulsion technologies have achieved a high level of maturity and flight experience
- Future plans:
 - -Higher performance for lower subsystem weight
 - -Most efficient thrust to power
 - Increased capabilities

GEO S/C Drymass vs. On-borad Propulsion lsp Ariane 5

:///=/////

Performance optimization is now the key

Propulsion Subsystem Costs

-Cost

- Competitive satellite market place require:
 - -Lowest possible unit recurring costs
 - -Lower unit non-recurring costs for product up grades, changes and qualifications
- Financially strong suppliers
 - Supplier base continues to shrink over time
 - -Competitive environment reducing

3

People – Future Propulsion Engineers

- There is no future satellite propulsion without the people with the knowledge, skills and experience to make it happen
- Based upon the United States Bureau of Labor Statistics May 2012 data:
 - Project job growth in the U.S. from 2010 to 2020 for aerospace and mechanical engineers is expected to grow by 7.8%
 - From 323,620 to 349,020 positions
- Engineering job growth numbers do not account for:
 - Work force attrition due age demographics
 - Loss of engineers to jobs outside engineering and science professions

Work Force Demographics

 Additional positions needed to be filled with up to 50% (161,810) of the work force eligible to retire now

Figure 2: Age distribution of the aerospace business workforce compared to the total U.S. workforce¹

Knowledge retention will play a critical role in the future of satellite propulsion

Work Force Short Fall

- There is the potential in the next 10 years for ~42,600 positions to go unfilled (183,214-140,598=42,616)
 - Loss of aerospace and mechanical engineers to jobs outside engineering and science professions is ~38.6% (88,202)
 - Universities today are pushing their limits to produce earned engineering bachelors degrees (228,800-88,202 = 140,598)

Figure 4: Number of aerospace & mechanical engineers earning bachelor degrees²

Hiring, training and retaining people will be key requirement for the future of satellite propulsion

engineering and science professions¹

Future Path Forward for Satellite Propulsion

- Euro consult's estimates 1,145 satellites will be built for launch between 2011 to 2020
 - 51% more satellites than the previous decade⁴
- Propulsion subsystems remain a satellite enabler
 - Flexibility
 - Subsystem/component simplification
 - Improvements in reliability
 - Higher performance
 - Increase in efficiencies or improved capabilities needed for mature technologies
 - Cost
 - Continued reductions in non-recurring and recurring costs must continue
 - Continued use of previously qualified hardware where possible
 - People
 - Maintaining a skilled engineering work force in the future will be key

The future of satellite propulsion is bright but not without challenge

Presentation References

- References:
- 1) From Garth Henning and Richard Leshner, NASA, presentation to the Committee on Meeting the Workforce Needs for the National Vision for Space
- 2) Engineering by the numbers: By Brian L. Yoder, PHD
- 3) Satellite Electric Propulsion: Key Questions for Satellite Operators and their suppliers: By Greg Allen with Royce Dalby, Stephen Ganote and Tim Wickham
- 4) Satellite Industry Growth to Continue Despite Challenging Environment: Space Daily Staff writers, Paris France Feb, 2012

702 HP XIPS Performance

Performance Parameter	Value	
	Low Power	<u>High Power</u>
Thrust	79 mN	165 mN
Specific impulse	3,400 sec	3,500 sec
Thruster power	2.0 kW	4.2 kW
Total power consumption	2.2 kW	4.5 kW
Xenon capacity	266 kg	
GXP travel range, each orthogonal axis	66.7º	
Total subsystem dry mass	150 kg	

Typical 702 HP XIPS System

